溶度积的测定? 怎么测定难溶的两性氢氧化物的溶度积

作者&投稿:从柱 (若有异议请与网页底部的电邮联系)
碘化铅溶度积的测定(3学时)一、实验目的1、掌握利用离子交换法测定难溶物碘化铅的溶度积的方法。2、掌握用离子交换法测定溶度积的原理。二、实验原理本实验采用阳离子交换树脂与碘化铅饱和溶液中的铅离子进行交换。其交换反应可以用下式来示意:2R-H++Pb
2+R2-Pb2++2H+将一定体积的碘化铅饱和溶液通过阳离子交换树脂,树脂上的氢离子即与铅离子进行交换。交换后,氢离子随流出液流出。然后用标准氢氧化钠溶液滴定,可求出氢离子的含量。根据流出液中的氢离子的数量,可计算通过离子交换树脂的碘化铅饱和液中的铅离子浓度,从而得到碘化铅饱和溶液的浓度,然后求出碘化铅的溶度积。三、实验用品仪器:离子交换柱、滴定管架、温度计、锥形瓶药品:碘化铅、强酸型离子交换树脂四、实验内容1、碘化铅饱和溶液的配制2、装柱首先将阳离子交换树脂用蒸馏水浸泡24-28h。实验时,将浸泡过的阳离子交换树脂约40g随同蒸馏水一并诸如交换柱中。控制流速,避免有气泡。3、转型在进行离子交换前,须将钠型树脂完全转变成氢型。可用100mL1mol·L-1HNO3以每分钟30-40滴的流速流过树脂。然后用蒸露水淋洗树脂至淋洗液呈中性(可用pH试纸检验)4、交换和洗涤将碘化铅饱和溶液过滤到一个干净的干燥锥形瓶中,。测量并记录饱和溶液的温度,然后用移液管准确量取25.0mL该饱和溶液,分几次转移到交换柱内。用一个250mL洁净的锥形瓶接流出液。待碘化铅饱和溶液流出,再用蒸馏水淋洗树脂至流出液呈中性。将洗涤液一并放入锥形瓶中。5、滴定将锥形瓶中的流出液用0.005mol·L-1NaOH标准溶液滴定,用溴化百里酚蓝作指示剂,在pH=6.5-7时,溶液由黄色转变为鲜艳的蓝色,即到达滴定终点,记录数据。7、数据处理(本实验测定Ksp值数量级为10-9-10-8合格)
碘化铅饱和溶液的温度℃:通过交换柱的碘化铅饱和溶液的体积/mL
NaOH标准溶液的浓度/mol·L-1
消耗NaOH标准溶液的体积/mL
流出液中H+的量/mol
饱和溶液中[Pb2+]/mol·L-1
碘化铅在离子交换树脂的转型中,如果加入硝酸的量不够,树脂没完全转变成氢型,会对实验结果造成什么影响?2、在交换和洗涤过程中,如果流出液有意少部分损掉,会对实验结果造成什么影响?3、在交换过程中交换柱中如有气泡对整个实验结果是否会有影响?六、注释1、在实验过程中,树脂里面不要进入气泡,如有气泡将其除去。2、转型过程中必须将其转型完全。3、收集流出液一定要完全,不要将其损失掉。4、过滤时用的漏斗、玻璃棒等必须是干净的、干燥的。以上就是测定方法。

难溶强电解质溶度积常数Ksp的测定一、 实验目的1、 了解极稀溶液浓度的测量方法;2、 了解测定难溶盐Ksp的方法;3、 巩固活度、活度系数、浓度的概念及相关关系。二、 实验原理 在一定温度下,一种难溶盐电解质的饱和溶液在溶液中形成一种多项离子平衡,一般表示式为:这个平衡常数Ksp称为溶度积常数,或简称溶度积,严格地讲Ksp应为相应个离子活度的乘积,因为溶液中个离子有牵制的作用,但考虑的难容电解质饱和溶液中离子强度很小,可警世的用浓度来代替活度。就AgCl而言 从上式可知,若测出难溶电解质饱和溶液中个离子的浓度,就可以计算出溶度积Ksp。因此测量最终还是测量离子浓度的问题。若设计出一种测量浓度的方法,就找到了测量Ksp的方法。具体测量浓度的方法,包括滴定法(如AgCl溶度积的测定),离子交换法(如CuSO4溶度积的测定),电导法(如AgCl溶度积的测定),离子电极法(如氯化铅溶度积的测定),电极电势法(Ksp与电极电势的关系),即分光光度法(如碘酸铜溶度积的测定)等

难溶强电解质溶度积常数Ksp的测定一、 实验目的1、 了解极稀溶液浓度的测量方法;2、 了解测定难溶盐Ksp的方法;3、 巩固活度、活度系数、浓度的概念及相关关系。二、 实验原理 在一定温度下,一种难溶盐电解质的饱和溶液在溶液中形成一种多项离子平衡,一般表示式为:这个平衡常数Ksp称为溶度积常数,或简称溶度积,严格地讲Ksp应为相应个离子活度的乘积,因为溶液中个离子有牵制的作用,但考虑的难容电解质饱和溶液中离子强度很小,可警世的用浓度来代替活度。就AgCl而言 从上式可知,若测出难溶电解质饱和溶液中个离子的浓度,就可以计算出溶度积Ksp。因此测量最终还是测量离子浓度的问题。若设计出一种测量浓度的方法,就找到了测量Ksp的方法。具体测量浓度的方法,包括滴定法(如AgCl溶度积的测定),离子交换法(如CuSO4溶度积的测定),电导法(如AgCl溶度积的测定),离子电极法(如氯化铅溶度积的测定),电极电势法(Ksp与电极电势的关系),即分光光度法(如碘酸铜溶度积的测定)等

难溶强电解质溶度积常数Ksp的测定一、 实验目的1、 了解极稀溶液浓度的测量方法;2、 了解测定难溶盐Ksp的方法;3、 巩固活度、活度系数、浓度的概念及相关关系。二、 实验原理 在一定温度下,一种难溶盐电解质的饱和溶液在溶液中形成一种多项离子平衡,一般表示式为:这个平衡常数Ksp称为溶度积常数,或简称溶度积,严格地讲Ksp应为相应个离子活度的乘积,因为溶液中个离子有牵制的作用,但考虑的难容电解质饱和溶液中离子强度很小,可警世的用浓度来代替活度。就AgCl而言 从上式可知,若测出难溶电解质饱和溶液中个离子的浓度,就可以计算出溶度积Ksp。因此测量最终还是测量离子浓度的问题。若设计出一种测量浓度的方法,就找到了测量Ksp的方法。具体测量浓度的方法,包括滴定法(如AgCl溶度积的测定),离子交换法(如CuSO4溶度积的测定),电导法(如AgCl溶度积的测定),离子电极法(如氯化铅溶度积的测定),电极电势法(Ksp与电极电势的关系),即分光光度法(如碘酸铜溶度积的测定)等

实验2-7 难溶强电解质溶度积常数Ksp的测定

一、 实验目的

1、 了解极稀溶液浓度的测量方法;

2、 了解测定难溶盐Ksp的方法;

3、 巩固活度、活度系数、浓度的概念及相关关系。

二、 实验原理

在一定温度下,一种难溶盐电解质的饱和溶液在溶液中形成一种多项离子平衡,一般表示式为:

这个平衡常数Ksp称为溶度积常数,或简称溶度积,严格地讲Ksp应为相应个离子活度的乘积,因为溶液中个离子有牵制的作用,但考虑的难容电解质饱和溶液中离子强度很小,可警世的用浓度来代替活度。

就AgCl而言

从上式可知,若测出难溶电解质饱和溶液中个离子的浓度,就可以计算出溶度积Ksp。因此测量最终还是测量离子浓度的问题。若设计出一种测量浓度的方法,就找到了测量Ksp的方法。

具体测量浓度的方法,包括滴定法(如AgCl溶度积的测定),离子交换法(如CuSO4溶度积的测定),电导法(如AgCl溶度积的测定),离子电极法(如氯化铅溶度积的测定),电极电势法(Ksp与电极电势的关系),即分光光度法(如碘酸铜溶度积的测定)等,以下分别加以介绍。

Ⅰ、硫酸钙溶度积常数的测定(离子交换法)

一、 实验目的

1、 练习使用离子交换树脂的方法;

2、 了解离子交换测硫酸钙溶解度、溶度积的的原理和方法。

3、 进一步练习酸碱滴定、常压过滤等基本操作。

二、 实验原理离子交换树脂是一类人工合成的,在分子中含有特殊活性基团能与其他物质进行离子交换的固态、球状的高分子聚合物,含有酸性基团而能与其他物质交换阳离子的为阳离子交换树脂,含有碱性基团而能与其他物质交换阴离子的为阴离子交换树脂。最常用的聚苯乙烯磺酸型树脂是一种强酸性阳离子交换树脂,其结构式可表示为:

本实验是用强酸性阳离子交换树脂(用R-SO3H表示)(型号732)交换CaSO4饱和溶液中的Ca2+,其交换反应为:

2R- SO3H + Ca2+ → (R SO3)2 Ca + 2H+

由于CaSO4是微溶盐,其溶解度部分除了Ca2+和SO42-以外,还有以离子对形式存在的CaSO4,因此饱和溶液中存在着离子对和简单离子间的平衡:

CaSO4(aq)= Ca2+ + SO42-

当溶液流经交换树脂时,由于Ca2+离子被交换平衡向右移动,CaSO4(ag)解离,结果全部被交换成H+,从流出液的[H+]可计算CaSO4的摩尔溶解度y:

[H+]可用pH仪测出,也可由标准NaOH溶液滴定得出,这里介绍滴定法。

设饱和CaSO4溶液中[Ca2+]=C,则[SO42-]=C,则[CaSO4(aq)]=y – c


Kd为离子对解离常数,25℃时Kd=5.2×10-3则



由方程求出C,并根据溶度积定义 ,由Ksp=[Ca2+][SO42-]=C2, 求出Ksp。

硫酸钙溶度积的测定~

实验2-7 难溶强电解质溶度积常数Ksp的测定





一、 实验目的

1、 了解极稀溶液浓度的测量方法;

2、 了解测定难溶盐Ksp的方法;

3、 巩固活度、活度系数、浓度的概念及相关关系。

二、 实验原理

在一定温度下,一种难溶盐电解质的饱和溶液在溶液中形成一种多项离子平衡,一般表示式为:


这个平衡常数Ksp称为溶度积常数,或简称溶度积,严格地讲Ksp应为相应个离子活度的乘积,因为溶液中个离子有牵制的作用,但考虑的难容电解质饱和溶液中离子强度很小,可警世的用浓度来代替活度。

就AgCl而言



从上式可知,若测出难溶电解质饱和溶液中个离子的浓度,就可以计算出溶度积Ksp。因此测量最终还是测量离子浓度的问题。若设计出一种测量浓度的方法,就找到了测量Ksp的方法。

具体测量浓度的方法,包括滴定法(如AgCl溶度积的测定),离子交换法(如CuSO4溶度积的测定),电导法(如AgCl溶度积的测定),离子电极法(如氯化铅溶度积的测定),电极电势法(Ksp与电极电势的关系),即分光光度法(如碘酸铜溶度积的测定)等,以下分别加以介绍。



Ⅰ、硫酸钙溶度积常数的测定(离子交换法)



一、 实验目的

1、 练习使用离子交换树脂的方法;

2、 了解离子交换测硫酸钙溶解度、溶度积的的原理和方法。

3、 进一步练习酸碱滴定、常压过滤等基本操作。

二、 实验原理

离子交换树脂是一类人工合成的,在分子中含有特殊活性基团能与其他物质进行离子交换的固态、球状的高分子聚合物,含有酸性基团而能与其他物质交换阳离子的为阳离子交换树脂,含有碱性基团而能与其他物质交换阴离子的为阴离子交换树脂。最常用的聚苯乙烯磺酸型树脂是一种强酸性阳离子交换树脂,其结构式可表示为:


本实验是用强酸性阳离子交换树脂(用R-SO3H表示)(型号732)交换CaSO4饱和溶液中的Ca2+,其交换反应为:

2R- SO3H + Ca2+ → (R SO3)2 Ca + 2H+



由于CaSO4是微溶盐,其溶解度部分除了Ca2+和SO42-以外,还有以离子对形式存在的CaSO4,因此饱和溶液中存在着离子对和简单离子间的平衡:

CaSO4(aq)= Ca2+ + SO42-

当溶液流经交换树脂时,由于Ca2+离子被交换平衡向右移动,CaSO4(ag)解离,结果全部被交换成H+,从流出液的[H+]可计算CaSO4的摩尔溶解度y:




[H+]可用pH仪测出,也可由标准NaOH溶液滴定得出,这里介绍滴定法。

设饱和CaSO4溶液中[Ca2+]=C,则[SO42-]=C,则[CaSO4(aq)]=y – c


Kd为离子对解离常数,25℃时Kd=5.2×10-3则



由方程求出C,并根据溶度积定义 ,由Ksp=[Ca2+][SO42-]=C2, 求出Ksp。

三、 实验步骤

1. 装柱 将离子交换柱(可用碱式滴定管代用)洗净,底部填以少量玻璃纤维或脱棉脂,称取一定数量的732强酸型阳离子交换树脂,放入小烧杯中,加蒸馏水浸泡,搅拌,除去悬浮的颗粒及杂质后,与水一起转移到离子交换柱中,打开交换柱下端旋钮夹子,让水慢慢流出,直到液面高于树脂1cm左右为止,夹紧螺旋夹,若有气泡,让玻棒插入树脂中赶走气泡,以后操作过程,均应使树脂泡在溶液中。气泡赶走后,在树脂上方加少量玻璃纤维(或棉花)。

2. 转型 为保证Ca2+完全交换成H+,必须将Na+型树脂完全转变成型H+,取40ml 2mol/L的HCl溶液分批加入交换柱,控制每分钟80-85滴流速让其通过离交树脂,HCl溶液流完后,保持10分钟后。[注意:如果用的是酸处理好的树脂,可在装柱后直接按下法处理],用50-70ml的蒸馏水淋洗树脂,直到流出液的pH为6-7(用pH试纸检验)。

3. 硫酸钙饱和溶液的制备 将1克分析纯CaSO4固体置于约70mL经煮沸后、又冷却至室温的蒸馏水中,搅拌10分钟后静置5分钟,用定量滤纸过滤(滤纸、漏斗和抽滤瓶均应干燥),滤液即为CaSO4饱和溶液。

4. 交换 用移液管取20.00 mL饱和CaSO4溶液,注入离交柱内,控制交换柱流出液的速度为20-25滴/分钟,用洗净的锥形瓶承接流出液。在饱和溶液差不多完全流进树脂床时,加蒸馏水洗涤树脂(约50mL水分批淋洗)至流出液的pH为6-7。在整个交换和淋洗过程中注意勿使流出液损失。

5. 氢离子浓度的测定 酸碱滴定法,流出液加2滴溴百里酚酞指示剂,用标准NaOH溶液滴定,当溶液由黄色转变为鲜明的蓝色即为滴定终点。精确纪录所用的NaOH溶液体积,按下式计算溶液中的氢离子的浓度。


四、 数据记录及结果

CaSO4 饱和液温度


通过交换柱的饱和溶液体积(mL)


NNaOH (moL/L )


VNaOH (mL)


[H+] moL/L


CaSO4的溶解度y


CaSO4的溶度积 Ksp



计算时Kd近似取25℃的数据,将计算过程写进实验报告。

误差分析,根据CaSO4的溶解度的文献值来算误差,并讨论误差产生的原因。

五、 思考题

1、 操作过程中为什么控制液体流速不宜太快? 树脂层为什么不允许有气泡的存在? 应如何避免?

2、 如何根据实验结果计算CaSO4的溶度积?

3、 制备硫酸钙饱和溶液时,为什么要使用已除去CO2的蒸馏水?

4、 影响最终测定结果的因素有哪些?通过影响因素分析,你认为整个操作过程中的关键步骤是什么?

5、 以下情况对实验结果有何影响?

1) 转型时,树脂未完全转换为H+型。

2) CaSO4饱和液未冷却至室温就过滤。

3) 过滤CaSO4饱和液的漏斗和接受瓶未干燥。

4) 转型时,流出的淋洗液未达中性就停止淋洗并进行交换。



附 CaSO4的溶度积的文献值



T ℃
0
10
20
30
40

溶解度×102mol/L
1.29
1.43
1.50
1.54
/

g/100g
0.1759
0.1928
/
0.2090
0.2097




阅读材料

离子交换技术

将化合物通过装有离子交换树脂的离子交换柱后,由于离子键地交换而得到相应产物的方法被称为离子交换法。该法广泛用于元素的分离、提取、纯化、有机物的脱色精制、水的净化以及用作反应的催化剂等方面,离子交换法所需要的物品包括相应的离子交换树脂和离子交换柱等。

离子交换树脂包括天然的和合成的两大类别,其中比较重要的是人工合成的有机树脂,它主要是利用苯乙烯和二乙烯苯交联成高聚物作为树脂的母体结构,然后再连接上相应的活性基团而合成的。人工合成的离子交换树脂是一种不溶性的具有网状结构的含有活性基团的高分子聚合物,在网状结构的骨架上有许多可以电离的能和周围溶液中的某些离子进行交换的活性基团,离子交换树脂的网状结构在水或者酸、碱性溶液中极难溶解,且对于多数有机溶剂、氧化剂、还原剂及热均不发生作用。

一. 离子交换树脂的分类

因所带基团和起的作用不同,离子交换树脂又可以分为可与阳离子发生交换反应的阳离子交换树脂、阴离子交换树脂及具有特殊功能的离子交换树脂等类别。

1.阳离子交换树脂 阳离子交换树脂是带有酸性交换基团的树脂,这些酸性基团包括磺酸基(-SO3H)、羧基(-COOH)、酚羟基(-OH)等。在这些树脂中,他们的阳离子可被溶液中的阳离子所交换,根据活性基的酸碱性的强弱不同,将阳离子交换树脂再细分为强酸性阳离子交换树脂(活性基为-SO3H),如国产的732型树脂(新牌号001-100#),中等酸性阳离子交换树脂(活性基为-PO3H2)(国产新牌号401-500#)和弱酸性阳离子交换树脂(活性基为-CO2H、-C6H4OH等)(如724型,新牌号101-200#)等,其中以强酸性树脂用途最广。

2.阴离子交换树脂 含有碱性活性基的树脂,这类树脂的阴离子可被溶液中的阴离子交换。根据活性基碱性的强弱差别分为强碱性阴离子交换树脂(活性基为季胺碱,如国产的711#、714#等)和弱碱性阴离子交换树脂(活性基为伯胺基、仲胺基和叔胺基,如701#树脂等)

3.具有特殊功能树脂 如螯合树脂、两性树脂、氧化还原树脂等(见表2-8)。

在使用中应根据实验的具体要求,选择不同的离子交换树脂。

二. 离子交换的基本原理

离子交换过程是溶液中的离子通过扩散进入到树脂颗粒内部,在与树脂活性基上的H+(或Na+及其它离子)离子进行交换,被交换的H+离子又扩散到溶液并被排出。因此离子交换过程是可逆的,对于阳离子交换树脂来说,离子价越大交换势越大,即与树脂结

表 2-8 离子交换树脂的种类

类 型
活性基
类别


阳离子交换树脂
强酸性
磺酸基团
H型(R-SO3H)Na型(R-SO3Na)
732型、IR-120型

磷酸基团
H型(R-PO3H2)Na型(R-PO3Na2)


弱酸性
羧酸基团
H型(R-CO2H)Na型(R-CO2Na)
724型、IRC-50型

苯酚基团
H型(R-C6H4OH)Na型(R-C6H4ONa)


阴离子交换树脂
强碱性
季胺基团
OH型(R-NR`3OH)

Cl型(R-NR`3Cl)
717型、IRA-400型

弱碱性
伯胺基团
OH型(R-NH3OH)

Cl型(R-NH3Cl)
701型、IR-45型

仲胺基团
OH型(R-NR`H2OH)

Cl型(R-NR`H2Cl)


叔胺基团
OH型(R-NHR`2OH)

Cl型(R-NHR`2Cl)


特殊功能离交树脂
螯合树脂、两性树脂、氧化还原树脂等


合的能力越强:

K+ < H+ < Na+ < K+ < Ag+ < Fe2+ < Co2+ < Ni2+ < Cu2+ < Mg2+ < Ca2+ < Ba2+ < Sc3+

同样,对于因离子交换树脂而言,其交换势也随着离子价的增大而加大,如对强碱性阴离子树脂而言:

Ac- <F- <OH- <HCOO- <H2PO4- <HCO3- <BrO3- <Cl- <NO3- <Br- <NO2- <I- <CrO42- <C2O42- <SO42-

一般离子的交换能力可用交换容量来表示,所谓的交换容量制的是1克干树脂可以交换相应离子的毫克当量数。不同类型的树脂交换容量不同,对于强酸性离子交换树脂来说,一般交换容量≥4.5毫克当量/克干树脂,因此可由此计算出某一实验所需的最低树脂量。

三. 影响树脂交换的因素

影响树脂交换的因素很多,主要包括以下几个方面:

1. 树脂本身的性质 不同厂家、不同型号的树脂交换容量不同。

2. 树脂的预处理或再生的好坏。

3. 树脂的填充,离子交换柱中树脂填充是是否有气泡。

4. 柱径比与流出速度 由于离子交换过程是一个缓慢的交换过程,并且这个交换过程是可逆的。因此流出速度对于交换结果影响很大,流出速度过大,来不及进行离子交换,离交效果较差。同时流出速度又与流动相溶液中离子的浓度和离子交换柱的柱径比[离子交换柱的高度与直径的比值(图2-35)]等因素有关,如离子浓度小时,可适当增加流出速度。在实验室中柱径比一般要求在10:1以上,柱径比较大时可适当增加流出速度。为了得到较好的结果,流出速度一般要控制在20-30滴/分为宜。

四. 新树脂的预处理与老化树脂的再生

1. 阳离子交换树脂的预处理 ⑴ 漂洗 目的在于除去一些外源性杂质,将购买的新树脂用自来水浸泡,并不时搅动。弃去浸洗液,不断换水直到浸洗液无色为止。⑵ 碱洗 因稳定性的要求,购买的新树脂基本上都是钠型的,利用碱洗过程,可将某些非钠型转换为钠型,便于下一步的处理。加等容量8%的NaOH溶液浸泡30分钟,分离碱液,用水洗至中性。⑶ 转换 用7%的HCl溶液处理三次,每次均为等容量并浸泡30分钟,分离酸液,并用水洗至中性备用(注:最后几次应该用蒸馏水或去离子水洗涤)。

2. 阴离子交换树脂的预处理 ⑴ 将新购阴离子交换树脂加等量50%乙醇搅拌放置过夜,除去乙醇,用水洗至浸洗液无色无味。⑵ 用7%的HCl溶液处理三次每次,均为等容量并浸泡30分钟,分离酸液,并用水洗至中性。⑶ 用8%的NaOH溶液处理三次,每次均为等容量并浸泡30分钟,水洗至pH 8-9为止。

3. 离子交换树脂的再生 离子交换树脂用过一段时间后,会发生色变,并失去交换能力,这就是树脂的老化,可通过处理使其再生。再生的方法因树脂不同而异,但基本步骤与预处理相类似,首先是漂洗,然后利用离子交换过程的可逆性原理,用H+、Na+(或OH-、Cl-)交换树脂上的离子即可。再生过程可以使用静态法和动态法等方法。以阳离子交换树脂的再生为例:⑴ 静态法 将经过漂洗的树脂加入适量(2-3倍体积或更多)的2mol/L的盐酸放置24小时以上(放置过程中要经常地加以搅拌),弃去酸液,用水冲洗至中性。⑵ 动态法 先将离交柱的残水放出,假如2-3倍容量的2mol/L(约为7%)的HCl溶液(或其它酸),打开离交柱下部的开关旋钮,使液体缓慢流出,并随时检验流出液的pH值,当流出液呈强酸性时,关闭旋钮静置一段时间,使交换充分(静态再胜)后再放出酸液,并将其余酸液不断加入(动态再生),最后用水冲洗至中性即可。

注意事项 ⑴ 为避免洗涤过程中自来水中的离子与树脂发生交换作用,最好先用自来水将树脂中的大部分酸(或碱)洗出[此时流出液pH约为2-3(11-12)]之后,在用蒸馏水(去离子水)洗涤至pH为6-7(或8-9)。⑵ 阴离子树脂在40以上极易分解,应特别注意。⑶ 离交树脂在使用过程中会逐渐裂解破碎,但是一般可以用3-4年甚至更长,不要轻易倒掉。⑷对已处理好(或再生好)的树脂,应立即使用,不可防止太久,因






Ⅰ 阳离子交换柱

Ⅱ 阴离子交换柱

Ⅲ 混合离子交换柱













图2-35 离交柱的柱径比 图2-36 离子交换装置图



为它的稳定性较差。一般阳离子离交树脂Na+型比H+稳定,阴离子离交树脂Cl-型比OH-型稳定。⑸ 树脂再生时,应根据结合在树脂上的离子选择不同的酸(碱),如结合的是Pb2+,就不能用HCl,而应该用HNO3因为Pb(NO3)2是易溶的.

五. 离子交换法的具体操作

1. 树脂的转型 即树脂应先经预处理或再生,转型后的树脂放置在蒸馏水中。

2. 装柱 ⑴ 树脂的选择 根据实验目的和具体情况选择不同性能的离子交换树脂,

若被吸附的是无机阳离子或有机碱时,宜选用阳离子交换树脂,反之若被吸附的是无机阴离子或有机算是应选用阴离子交换树脂,如果是分离氨基酸这样的两性物质时,则使用阳离子阴离子交换树脂均可。确定了阳、阴离子交换树脂后,需确定交换基的种类,如对于吸附性强的离子,可选用弱酸(碱)性离交树脂,而对于吸附性较弱者,宜选用强酸(碱)性离交树脂。在数种离子共存时,宜县选用吸附性较弱的,以后再选用吸附性较强的交换树脂。若将树脂作催化剂时,应选用强酸(碱)性离子交换树脂。⑵ 树脂装柱 将已经活化好的书之装入离子交换柱的过程叫装柱。装柱的关键就在于不能是树脂出现断层或气泡,具体做法是:先将离子交换柱中加入部分去离子水,然后将树脂带水装进柱内并打开下部活塞,使水缓缓流出。当树脂加完后,用去离子水将树脂冲洗至流出液的pH为中性。在装柱过程中特别注意不能使树脂层断水,以免产生气泡而引起树脂断层。若不慎有气泡产生时,可利用玻棒搅动树枝,并将气泡带出。

3. 离交 打开离子交换柱下端的开关旋钮,将已经处理好的离子交换柱中的去离子水放出(注意:此时要再检验一次流出液的pH值,如不为中性则继续用去离子水冲洗至中性)。直到去离子水刚刚掩盖树脂时,将待处理的样品液加入到离子交换柱中(注意:加入时不要使树脂翻动),打开树脂柱下端开关旋钮,控制流速在每分钟20-30滴,当样品液几乎全部进入到树脂中时,加入去离子水(注意:在离交过程中同样不能让树脂层断水,以免产生气泡,影响离交效果)继续离交,直到流出液的pH值约为6-7时为止。⑷

树脂再生 方法见前所述。

将新鲜制备的两性氢氧化物,用双蒸水洗涤,离心除去水,并真空干燥。
然后称取一定量的粉末于双蒸水中,搅拌若干时间后,分散于双蒸水中,测定pH,计算出氢氧根离子浓度。离心,取上层清夜,做等离子光谱,测定PPM级金属离子的浓度。根据溶度积公式,便得到其溶度积。
可以分别称取0.01,0.1,0.2, 0.5, 1克粉末样品,进行测试,考虑平均值,得出溶度积。

硫酸钙溶度积的测定
答:具体测量浓度的方法,包括滴定法(如AgCl溶度积的测定),离子交换法(如CuSO4溶度积的测定),电导法(如AgCl溶度积的测定),离子电极法(如氯化铅溶度积的测定),电极电势法(Ksp与电极电势的关系),即分光光度法(如碘酸铜溶度积的测定)等,以下分别加以介绍。Ⅰ、硫酸钙溶度积常数的测定(离子交换法)一、 实验目的1...

如何测定氢氧化铜的溶度积?
答:首先需要设定铜离子浓度为1.0 摩尔/升,经查氢氧化铜的溶度积常数为2.2X10(-20),当氢氧化铜开始沉淀时,铜离子的浓度与氢氧根浓度的平方的乘积应大于2.2X10(-20),所以铜离子开始沉淀时,氢氧根离子的浓度等于1.48X10(-10),氢离子浓度与氢氧根离子浓度的乘积是1X10(-14),计算氢离子浓度...

如何测定难溶弱电解质和难溶两性氢氧化物的溶度积?
答:测定难溶弱电解质和难溶两性氢氧化物的溶度积可以通过溶度测定实验来实现。以下是一种常用的方法:1. 准备饱和溶液:首先,准备一定量的难溶物质(如难溶弱电解质或难溶两性氢氧化物)和溶剂(通常选择水)。将难溶物质加入溶剂中,并充分搅拌或加热,直到达到饱和状态。饱和状态下,溶液中不再发生溶解或...

怎样测定碘酸铜的溶度积?
答:2、测定碘酸铜的溶度积,加深对溶度积概念的理解。3、了解用光电比色法测定碘酸铜溶度积的原理和方法。4、熟悉分光光度计的使用,吸收曲线和工作曲线的绘制。二、原理:将硫酸铜溶液和碘酸钾溶液在一定温度下混合,反应后得碘酸铜沉淀,其反应方程式如下:Cu2+ +2IO3=Cu(lO 3) 2↓ 三、实验过程...

如何测定甲醛的溶度积常数?
答:Fehling试剂(主要是新制Cu(OH)2碱性悬浊液),加热 甲醛、丁醛:产生砖红色的Cu2O沉淀 苯甲醛:不反应 如果可以定量的话:配置同浓度的甲醛、丁醛溶液,加入过量Fehling试剂,则甲醛产生的沉淀质量是丁醛的2倍 如果不能定量的话:将甲醛、丁醛反应后溶液过滤,滤液中加入过量HCl 甲醛:产生气泡(CO2)...

硫酸钡溶度积常数的测定中,为什么要考虑水的电导率?
答:参考实验:电导率法测定硫酸钡的溶度积 实验目的 :熟悉沉淀的生成、陈化、离心分离、洗涤等基本操作。2.了解饱和溶液的制备。3.了解难溶电解质溶度积测定的一种方法。4.复习和巩固电导率仪的使用。实验原理 难溶电解质的溶解度很小,会很难直接测定。但是,只要有溶解作用,溶液中就有电离出来的带电...

1测定溶度积常数时,PbCNOs),和KC1反应,为什么要不断振荡试管?
答:在测定溶度积常数的过程中,不断振荡试管的原因主要有两个:确保反应的均匀性:在化学反应中,反应物和生成物的分布不均一可能会影响最终的测定结果。例如,如果反应物或生成物在试管中分布不均,可能会导致局部浓度过高或过低,这样就不能准确地测定溶度积常数。通过不断振荡试管,可以确保反应物和生成...

如何正确的测定溶质的电解质的溶度积常数?
答:极谱电流  方波极谱之所以有很高的灵敏度,是由于它在充电电流消失的时刻记录电流,因而极谱电流中没有充电电流,可以通过放大电流来提高测定的灵敏度。在图1中,曲线1为方波电压,其半周期为τ。由于方波电压的频率较低,τ的数值远大于电解池和线路中的电阻R 和双电层电容C所组成的时间常数RC。曲线2...

1.除用分光光度法外,还可用什么方法测定Cu(lO3)2的溶度积Ksp?
答:【分析】本题考查溶度积常数的测定方法,难度不大,掌握溶度积常数的定义是解题的关键。【解答】利用电导滴定法、电位滴定法、络合滴定法等都可以测定溶度积常数。故答案为:电导滴定法;电位滴定法;络合滴定法等。

硫酸钡溶度积常数的测定实验报告为什么要煮沸的去离子水?
答:去离子水里面相关干扰离子小于10负5次方。可以认为对溶度积常数测定没有影响。溶度积常数的值是比较小的。