活动断裂的主要活动方式及其动力学机制分析 构造演化阶段及动力学机制

作者&投稿:永郎 (若有异议请与网页底部的电邮联系)

活动断裂的活动性及其活动方式研究既是青藏高原隆升机制与动力学过程所需要依据的基础信息,又是进行区域地壳稳定性评价的重要指标。较为详细的野外地质调查成果、GPS位移场观测数据和构造应力场数值模拟结果为系统分析滇藏铁路沿线活动断裂的主要活动规律及其动力学机制奠定了基础。从前文所述可以看出,青藏高原不同地区的变形方式是不一致的,相应地,滇藏铁路沿线的断裂活动规律具有明显的分区性。以下分成藏南区、藏东南区和滇西北区对主要活动断裂的活动规律及其动力学机制加以总结和阐述。

一、藏南区活动断裂的主要活动方式及其动力学机制

晚新生代以来,在印度板块向NE方向的强烈推挤作用下,青藏高原南部形成以逆冲对叠为主的喜马拉雅前陆逆冲楔,塑造了该区基本构造格局。滇藏铁路拉萨-林芝段所在的藏东南区,在晚近时期,一方面随着NE向的推挤,深部物质向东流动,导致地壳表层整体产生向北和向东的位移分量;另一方面,在NE向主压应力产生作用的同时,出现SE-SSE方向的伸展或拉张,形成和加剧了一系列NNE向的裂谷或断陷盆地的形成和发展,控制这些盆地的边界断裂成为第四纪以来特别是晚更新世以来活动性较强的构造部位,它们的活动方式以正断为主,如:亚东-那曲裂谷带、桑日-沃卡裂谷带等,这些部位也是现代地震的频发区。在上述应力作用下,还可以产生NW向的右旋和NE向的左旋共轭走滑断裂,这些走滑断裂也控制了一些沉积盆地的形成,它们主要分布在拉萨以西地区。而相对较早发育的近EW向构造变形带,如雅鲁藏布江变形带、工布江达-墨竹工卡变形带等,随着板块拼贴的完成,其与周边物质主要以整体运动的形式存在,晚更新世以来的活动性明显变弱,只是在林芝以东受到东喜马拉雅构造结的阻挡,产生NE向的弧形偏移。

应当指出,尽管上述近EW向构造变形带在第四纪期间活动性较弱,但它们仍可构成地下水贯通和传导的通道,因此,该段铁路沿线沿EW向构造变形带出现一系列的温泉、沸泉是可以理解的。

二、藏东南区活动断裂的主要活动方式及其动力学机制

藏东南区(三江区)活动断裂的突出特征是表现为一系列醒目的NW向走滑断裂带,如嘉黎断裂带、怒江断裂带、澜沧江断裂带、金沙江断裂带等。前已叙及,印度板块与欧亚板块碰撞过程中,在喜马拉雅山脉的东、西两端形成了东喜马拉雅构造结(阿萨姆)和西喜马拉雅构造结(帕米尔)。印度板块在向北持续的挤压作用和向北推移过程中存在反时针的旋转(图7-14),从而在南迦巴瓦地区形成或加强了东喜马拉雅构造结的楔入(Dewey et al.,1989;刘宇平等,2000),这种楔入作用所产生的地质效应在三江区活动断裂的演化和活动方式方面起到了重要作用,也使得东喜马拉雅构造结成为三江区与藏南区活动构造的分界带或过渡带。

图7-14 印度板块相对欧亚板块向北连续位移图

南迦巴瓦楔入构造由楔入体和走滑断层系组成。楔入体由前寒武纪的喜马拉雅构造单元构成,它是印度板块的基底,呈NE向延伸数百千米、宽约数十千米(图7-15)。通过线理、片麻理及面理褶皱分析,至少可识别出3次构造变形(刘宇平等,2000):第一次构造变形自北向南逆冲,喜马拉雅构造单元中形成EW走向、北倾并向南逆冲的断层系及相应的EW向褶皱;第二次构造变形以NE向的走滑剪切、向南逆冲和向北的伸展为特征,NE向的走滑主要发生在喜马拉雅构造单元的东西两侧,东侧为旁辛-汗密右旋走滑剪切带,西侧为米林-鲁朗左旋走滑剪切带,喜马拉雅构造单元的内部以向南逆冲为特征;第三次构造变形以抬升和走滑变形为特征,抬升主要发生在构造结的核部,旋转走滑作用产生于构造结的外部,成为三江区走滑活动断裂系形成和发展的主要力源。

图7-15 南迦巴瓦地区地质构造单元示意图

在南迦巴瓦地区,东喜马拉雅构造结的楔入作用导致了大峡谷的形成和发展;在区域上,楔入作用促进了青藏高原东南部物质以东喜马拉雅构造结为核心的顺时针转动。由于旋转的差异性,从旋转的核心向外分别出现右旋走滑、共轭剪切和左旋走滑;靠近核心以右旋走滑为特征,如嘉黎右旋走滑剪切带、怒江右旋走滑断裂带等;外侧以鲜水河-小江左旋走滑剪切带为代表,而在两剪切带之间可左旋与右旋共轭出现。这一构造动力学机制与青藏高原东南部GPS位移场观测结果和现代构造应力场的数值模拟结果是一致的。

滇藏铁路所在的三江区主要靠近东喜马拉雅构造结的核心部位,第四纪以来的构造活动以隆升为主,NW向活动断裂的右旋运动幅度相对较小,如怒江断裂、澜沧江断裂等,而共轭剪切作用产生的部分NE向活动断裂(如巴塘断裂等)及其控制的断陷盆地的活动性相对比较明显,并成为重要的地震构造带。这些NE向活动构造带的存在,一方面说明地壳深部塑性流动的存在,另一方面,不排除在这些地区的地表伴随地震活动出现新生断裂。

三、滇西北区活动断裂的主要活动方式及其动力学机制

滇藏铁路所经过的滇西北区主要位于著名的“川滇菱形块体”。川滇菱形块体由金沙江断裂-红河断裂以及鲜水河断裂-安宁河断裂-小江断裂带所围限。前人研究表明,川滇菱形块体作为一个独立的和统一的新构造单元参与青藏高原构造区的变形调整,以其特有的走滑挤出变形为主。由于不同性质断裂带的活动,川滇菱形块体被分割成几个次级块体参与青藏高原东南边缘地壳的变形调整,地壳块体除了向南和南东的滑移外,还兼有刚性块体转动,其运动图像十分复杂(图7-16)。各次级块体的最新构造变动包括平移、顺时针转动和垂向隆升等,是印度板块-欧亚板块碰撞、印度板块北移引起板块边缘或内部强烈隆起、变形局部化和物质东向逃逸受阻引起的应变响应。

图7-16 川滇地区活动断裂分布与地壳运动状态图

最新构造变动的矢量分析和GPS实测到的现今地壳运动一致地显示,羌塘地块、马尔康块体西北次级块体和滇中次级块体等存在着自西向东连续向南偏转的东向运动,表明红河断裂带以北川滇地区最新构造变动的力源来自于青藏高原物质东向滑移。因此,无论是红河断裂带以西地区块体的顺时针转动,还是川滇菱形块体SE向平移叠加顺时针转动,都是印度板块与欧亚板块碰撞、印度板块北偏东向运移在青藏高原与相对稳定的华南地块之间近SN向右旋剪切变形区的应变响应,但转动模式有明显区别。红河断裂带以西地区是板块边缘近SN向至NW向右旋剪切变形带内部次级NE向断裂左旋走滑引起次级块体的顺时针转动;而川滇菱形块体明显的顺时针转动则主要起因于青藏高原中部羌塘地块东向滑移,并在与华南地块交接部位强烈受阻,造成川滇菱形块体东西两侧边界断裂的滑动速率东大西小,引起川滇菱形块体内部次级块体叠加在SE向平移运动之上的被动式顺时针转动(徐锡伟等,2003)。中更新世中晚期开始至今(约距今0.4 Ma以来),喜马拉雅事件在整个川滇地区几乎同时发生,川滇块体各主要边界构造带再次呈走滑运动,是川滇菱形块体最新一期走滑挤出运动的开始,这种变形与运动格局一直持续至今。



活动断层的观察和研究~

活动断层一般为目前还在活动的断层,或者近期曾有过活动、不久的将来还可能重新活动的断层。活动断层既可以是新生代以来的构造运动所产生,也可以是老断层在近代构造应力场作用下重新活动的结果。
活动断层主要根据基准线来确定其活动时代和强度,作为活动断层的基准线可以分为三类标志。
(1)地物标志
一些人工的标志性建筑,如公路、铁路、街道、墙壁、栅栏、田埂、水井等被断层所切错位移,说明活动断层的存在(图8.67,图8.68),这对于确定近几百年以来的活动断层最为有效。通过对活动断层两盘位移特征的观察研究,可以判断新构造运动地应力作用的方式和方向。通过对活动断层两盘位移方向和位移量的测量,可以判断新构造运动地块运动的特征。

图8.67 活动断层错断田埂


图8.68 活动构造造成铁路弯曲变形

(2)地貌标志
主要是根据现代地貌景观来判别活动断层,这对于确定过去几万年~几十万年的新活动断层较为有效。比如说错断的山脊,由于挽近平移断层的活动造成相对平移错动,造成某一方向的山脊发生突然的、有规律的错断(图8.69);再比如,活动断层的作用,常常影响水系的发育,引起河流的急剧转向、甚至切断河谷(图8.70),若活动断层通过河谷阶地,会使其发生错断位移等等。
(3)地质标志
(a)地热标志:温泉一般是现代活动断层重要证据,温泉一般沿活动断裂带上涌,而在平面上形成一系列顺断层分布的带状、线状、串珠状温泉(点)。
(b)错移标志:在新生代沉积物中发育的断裂为新构造运动的产物,如果这些断层切割错移新生代的沉积物,这表明它们是活动性断层。可根据上述对断层的观察和分析方法对其做几何学、运动学和动力学的研究。

图8.69 活动断层错断山脊示意图

B—三角切面;C—断层小崖;D—断层池;E—挤压脊;F—断层鞍部;G—断层沟;H—横移谷;I—闭塞丘;J—断头河;K—风隙;L-L′—错移的山麓线;M-M′—错移的河阶

图8.70 活动构造造成河流的急剧转向

(c)地震标志:地震是构造运动,尤其是断层的现代活动表现,地震带一般是沿活动断裂带分布。对古地震和现代地震资料的收集、整理、分析,可以帮助确定活动断层的存在及其他的构造活动变形特征。

为了研究构造的形成机制、动力作用方式和构造演化规律,在野外系统收集了各类节理5000余条,结合区域应力特征进行野外分期配套,并在室内采用求解主应力状态的应用程序,全部节理点应力状态由计算机自动恢复,同时,结合煤镜质组反射率各向异性的测定和典型断裂带岩石定向样的岩组分析,确定构造演化阶段,恢复各期古构造应力场。
通过点应力状态恢复,求得中间主应力轴σ2近于直立(σ2倾伏角为80°~90°),最大和最小主应力轴σ1和σ3近于水平(σ1,σ3倾伏角变化于0°~12°之间)。选用σ1、σ3水平线做各期应力轨迹图,以反映各期应力在全区的变化趋势。根据构造形迹间的复合关系和从动力学及运动学方面对动力源、动力作用方式及其特点、运动机制、运动性质及动力作用路线的研究,结合区域构造分析,可将本区主要构造演化分为三个阶段,即印支期、燕山期和喜马拉雅期。与此相对照,形成了三期古构造应力场,这些方面的研究是认识控气构造及其网络发生发展的基础,也是厘定现今导气、阻气和储气构造的直接依据。
5.3.1 第一阶段——印支期
由图5.38可见,最大主应力σ1作用于近南北方向,σ1在全区的平均方位为NE8°。最小主应力σ3在全区的平均方位为N100°。σ1在北区北部和南北区的交界地带为南北向;在南区和北区南部,σ1方向略偏转为北北东-南南西方向(σ1在南区为NE10°,在北区南部为NE8°)。从全区来看,本期应力场分布比较均匀,全区未出现明显的应力集中与分散现象。

图5.38 印支期主应力轨迹图

1—矿区边界线;2—最大主应力迹线;3—最小主应力迹线;4—地层压缩方向;5—点应力状态
从动力学角度分析,上述主应力来自因秦岭地槽的最终封闭和华南陆块的向北推挤作用,鄂尔多斯地块遭到了强大的由南向北的推挤力,动力作用方式以挤压为主,动力作用路线为南北向。因此产生一系列东西向展布的压性构造和南北向展布的张性构造。区内近东西向的褶皱等压性构造可能形成于这一时期。野外节理资料表明,这一时期也形成了北西向与北东向两组共轭剪节理。它们都为后期构造的发育奠定了一定基础。
5.3.2 第二阶段——燕山期
本期构造应力场的主要特征是,最大主应力σ1处于南东-北西方向,平均为N307°,最小主应力σ3处于北东-南西方向,平均为NE38°。应力在全区分布较均匀,应力集中与分散现象不明显,且主应力轴方位稳定。南区σ1作用于N295°一线,北区σ1作用于N306°一线。但应力在南北区之间的交界地带分布明显不均,由北向南,应力先分散后集中,且主应力方向变化较大,总体上σ1作用于N320°一线(图5.39)。

图5.39 燕山期主应力轨迹图

1—矿区边界线;2—最大主应力迹线;3—最小主应力迹线;4—地层压缩方向;5—点应力状态
此期的动力学特征是,随着库拉-太平洋板块对中国大陆施加的影响加剧,使得中生代已经发育起来的鄂尔多斯沉降盆地遭到强烈的侧向挤压和扭动,导致原沉降盆地上隆消失。动力源来自东南方向,动力作用方式仍为挤压作用,但在受到鄂尔多斯东缘近南北向的边界限定后,又使其发生左旋扭动。这样,由于动力作用路线及运动性质的改变,便在本区发育起一系列以左行压扭为特征的构造形迹。区内的F1正断层和F2逆断层在这时均应属压扭性逆断层,受此期应力影响,有可能使原印支期内已发育起来的东西和北东向构造因受挤压而产生不同程度的闭合,唯有原已存在的北西向构造因受张应力复合而开启。同时,还可能产生新的北西向张裂和近于东西和南北方向的共轭剪节理。
这个时期的构造作用对本区影响最大,为了确定煤层中构造动力作用方式、性质及作用路线,也为了准确印证此期左旋扭动作用的存在,作者在南北两区各选择了两个采样点采集定向煤样,用显微光度计在无划道的正常镜质组区域分散颗粒上测定反射率值。同时,在象山矿边部于F1断层带上采集定向岩样进行X射线岩组分析。
由近1600个反射率数据的测定结果表明:
1)区内各样品反射率具明显各向异性,其最大值为2.412,最小值为1.247,中间值为1.707。正性光率体和负性光率体都有,并和邻近地区所测数据也有较好的对应性(表5.12)。显然区内镜质组反射率正向光率体和负向光率体都有。说明区内镜质组反射率为两轴光性,系侧向挤压应力作用的结果。

表5.12 主反射率、双反射率值一览表

2)光率体长轴方位的最大值为54°,最小值为35°。平均值为44.5°,与区内北东向褶皱和断裂方位基本相同。由此恢复的古构造挤压应力方位为N140°,与燕山晚期区域应力场的挤压方向也基本吻合(表5.13,图5.40)。

表5.13 光率体长轴方位与主干构造走向方位对照表


图5.40 区内及邻近矿区煤层镜质组光率体水平截面分布图

3)平均反射率和最大反射率的变化与区内构造的复杂程度差异性相对应,越接近主要褶皱轴部其数值越大,而这里遭受的构造变动相对剧烈。最小值位于桑树坪矿所在地带,这里的构造相对比较简单。总的平均反射率由西向东有增大之势。而北东向构造的影响大体上也是由东向西减弱的。
上述三点表明,燕山期动力作用在煤层中有明显反映,因此煤层构造也主要形成于这一时期。
X射线岩组分析是在宏观构造变形研究的基础上进行矿物晶格变形研究的一种新方法。其原理可简述为在同一定向标本上采取一定量岩石制成粉晶,然后测量矿物各面网衍射强度值,并由计算机直接绘制粉晶曲线图,该图反映的矿物面网无变化,即说明矿物无定向性。其次是在同一标本上切制定向薄片,作X射线衍射分析。用得出的曲线图与粉晶曲线图上对应面网衍射强度进行对比。其值接近1(一般相差不大于5%),即认为矿物无定向性,反之则具定向性。此定向性一般是因构造挤压、剪切或压扭作用造成的。对比图5.41、图5.42可见,F1断层带方解石和白云石矿物的许多面网峰值强度在两种曲线上有明显差异,对应面网衍射强度比值差均大于5%(表5.14)。这就说明了这两种矿物均具有明显或较明显的定向性。结合断层面大量发育的擦痕和节理构造特点,这种定向性是压扭作用的产物。

图5.41 象山沟口F1断层面定向岩块粉晶X射线衍射曲线图


图5.42 象山沟口F1断层面定向岩块薄片X射线衍射曲线图


表5.14 X射线衍射数据表

注:A为粉晶;B为定向岩块;①为具较明显定向性;②为具明显定向性。
以上分析进一步说明了本期构造变形的动力作用方式是以压和压扭作用为主。
5.3.3 第三阶段——喜马拉雅期
从图5.43反映的喜马拉雅期主应力轨迹图上可见,本期应力场的主要特征是:最大主应力σ1,转为北东-南西向,全区平均方向为NE38°,最小主应力σ3为北西-南东向,平均为N130°。该期应力场在全区分布不均,集中表现在应力场在南北区交界地带明显集中,σ1迹线在此呈明显聚拢之势,导致这里的构造复杂化。就全区而言,σ1方向变化不大,主导方位为NE40°,只是在北区北端略向北北东-南南西方向偏转,主导方位为NE23°—N203°。喜马拉雅期构造演化就动力学和运动学特征而言,又可分为古近-新近纪和第四纪两个时期。

图5.43 喜马拉雅期应力轨迹图

1—矿区边界线;2—最大主应力迹线;3—最小主应力迹线;4—地层压缩方向;5—点应力状态
5.3.3.1 古近-新近纪时期
此期欧亚板块、太平洋板块和印度板块之间几乎同时发生了两起重大构造事件,一起是原向北北西方向运动的库拉-太平洋板块在库拉板块向北消亡后,太平洋板块转向北西西方向运动;另一起是澳大利亚-印度板块与欧亚板块碰撞制止了欧亚板块的逆时针旋转。同时,印度板块在碰撞后继续向北推挤,对中国大陆施加强大的右行压扭作用。黄汲清等也认为,新生代以来华北等地一系列右行张扭性断陷盆地的发生、发展以及现代地震的产生都和这一作用有密切关系。其他构造特征也显示出亚洲大陆相对于太平洋板块正作由南向北的运动。
第一起事件的动力作用方式以挤压为主,动力作用路线为由东至西的推挤,渭河断陷的产生即是这种动力作用的结果。
第二起事件较第一起影响更为深刻。此时平行于龙门山方向的挤压作用力遇到秦岭褶皱带时分解为一对左旋扭动力,而在鄂尔多斯东南缘则组成为右行扭动力偶,在这对力偶作用下,北东向构造显张性,北西向构造显压性(煤层褶皱的形成与此期有关),而东西向和北北东向构造或具压扭性,或具张扭性。但考虑到区域主张应力方向为北西-南东向,故本区扭性和压性作用应不是主要的(图5.44),而沿近南北向的拉张伸展作用和沿北西-南东向的拉张伸展作用开始起主导作用,这个时期在邻区形成了汾河地堑,使汾渭地堑系连为一体。

图5.44 新近纪区域应力场及局部应力场示意图

5.3.3.2 第四纪时期
第四纪以来,随着汾渭断陷盆地的大幅度拉伸作用,区内有些断层明显活动,地震活动、滑坡、水系变迁等现象非常普遍。牵动了早期已形成的各种构造形迹,使它们均发生不同程度的张裂。如作为北东向活断层代表的F1大断层,不同程度地切穿和控制了第四系沉积,其上盘第四系厚度在禹门口一带仅100m,而在英山一带却可达400m;卫星照片还清楚地反映出受F1影响的许多水系发生明显的右旋错位现象,北西向活断层在韩城县城及F1断层上盘发育较多,在近三千年内相对错动距离约2m,每年活动速率为

韩城矿区煤层气地质条件及赋存规律

这与马杏垣等所确定的华北板块同期移动速率大体一致,从区域上看,北东向及东西向活断层的活动速率可能较北西向更大,这样,若把第四系下限放在2Ma前,F1断层第四系以来沿倾向水平位伸了479m,这个距离与F1主断面以上阶梯状断层组平面组合宽度也大致相当。
按史牛坡断层产状计算,第四系地层平面拉伸距离约0.55m,这与韩城上峪口、西垣山、华子山、西北庄一带灰岩出露区所见的缝型裂隙张开宽度的平均值也很相近。
区内东西向断裂活动直接控制第四系沉积的例子不多,但参照本区西南邻近地区的东西向断层的活动特征,仍可说明本区此时的张裂活动幅度。如邻区的鲁桥-关山断裂,其上盘第四系厚度大于1200m,下盘约600m,如果和区内北东向活断层的活动幅度比较,东西向构造的活动幅度可能要较北东向或北西向更大。

图5.45 鄂尔多斯及其周缘地壳垂直形变速率图(1955~1986年)

等速率线单位:mm/a
(据国家地震局《鄂尔多斯周缘活动断裂系》课题组,1988)
由此可见,区内此期动力作用方式主要为拉张伸展,动力作用路线沿北西-南东向,其次为南北向以及由之所派生的北东-南西向。结果形成了一系列近东西向和北东向的正断层和北西向的传递断层,正断层均沿伸展方向呈阶梯状跌落、传递断层则由于北东和东西向正断层扩张速度的差异而产生,但也以张性或张扭性为主。区内多方向拉张伸展作用一直持续到现代,据近期大地测量成果可见,本区地壳垂直形变速率为2~7mm/a(图5.45),邻近地区的地壳垂直形变地质剖面也显示了较大幅度的沉降作用(图5.46),这些都是平面拉张伸展效应的直接依据,二者也有很好的对应关系。

图5.46 绥德—西安垂直形变(1976~1986年)地质剖面图

(据国家地震局《鄂尔多斯周缘活动断裂系》课题组,1988)
综合上述,区内在地史时期因多期多方向构造应力作用产生的多组构造形迹,从其最终显示的力学性质来看,北东—北北东向破裂构造应具张或张扭性质,近东西向构造具张性,北西向具张扭性,其他方向均具不同程度的压或压扭性。喜马拉雅期以来,煤层中虽也形成或继承发育一系列近东西和北西向褶皱,但均比较宽缓,沿其轴部和两翼,张性破裂复合是一重要构造特征。
伴随汾渭地堑系张裂伸展构造的广泛活动,致使全区各种构造形迹均受到不同程度地牵动而发生开启,尤以上述几组方向的破裂构造开启最甚。就南北区而言,南区更靠近汾河地堑和渭河地堑伸展系的交汇处,故破裂构造的伸展开启作用更强于北区。

断裂活动性与地震
答:以下也按划分的大地形地貌单元西、中、东三个区段分别论述主要断裂的活动特征。 (一)西区段断裂活动特征 本区段大地构造位置正处于挽近时期以来强烈隆起的青藏地块北侧边沿,积聚有强大的构造应力,因此晚更新世以来活动的断裂最多,活动...

断裂(层)及其活动性调查
答:我国活动断裂调查及研究方法研究较为成熟,调查研究技术手段有地球化学异常、地球物理异常等,并且尝试给出最佳的组合方法。邓起东等(2007)指出小间距钻探和槽探是研究断层新活动的有力手段,可以揭露活动断层最新活动和古地震错动历史的最好技...

断裂发育时期及运动学特征
答:(二)断裂运动学特征 1.断裂古断距和活动速率:断裂运动学主要特征应是两盘运动方向和活动速率。研究区内断裂均为正断层及其反转结果——下正上逆型断层和上下皆逆型断层。因此,研究区断裂两盘运动方向是上下方向,为标定...

活动断裂
答:由邓启东等编制的中国活动构造图(1∶400万)详尽地表示了活动断裂、活动褶皱、活动盆地、活动块体、火山和地震等不同类型的活动构造及其运动学参数(图3–3)。中国处于印度板块、太平洋板块和菲律宾海板块的夹持之中,是一...

断裂活动特征分析
答:喜马拉雅等四大构造运动的影响,其断裂活动具有多期次性和周期性活动特点,因此,本节从构造剖面的演化、断裂生长指数与活动速率、声发射古地应力测量及流体地质地球化学信息研究等四个方面,重点分析了盆地腹部莫北地区主要控油断裂的活动特征。

活动断裂与地震构造背景
答:龙门山活动断裂右旋斜冲运动与印度大陆北向俯冲导致松潘-甘孜地体的东向挤出存在动力学成因联系(董树文等,2008;吴珍汉等,2008),是龙门山地区地壳缩短增厚、山脉隆升与构造地貌演化的重要原因(Zhang P.Z.et al.,2004...

断裂活动
答:黄河三角洲新生代断裂活动具有继承性和新生性的运动特点。区内及邻区的断裂发育,主要有北东东和北西西两组。(1)埕子口断裂 该断裂为埕宁隆起和济阳坳陷的分界断裂,总体走向为北东东向,呈折线状。沿断裂带为一明显的...

断裂系统及其活动性分析
答:莱4号断层发育于沙四上亚段沉积时期,对研究区南部的目的层段地层的沉积以及后期的油气分布起到明显的控制作用。2.主要断层生长指数的计算 目前研究生长断层的活动性主要是计算断层的生长指数,断层生长指数是指断层下降盘厚度...

断裂活动及其特点
答:构造活动期主要在沙三—东营期。断层上盘发生伴生的滚动背斜,延伸长度20km以上。派生的次级断层主要位于主断层的下降盘并与主断层相交。断裂活动早期强烈、晚期变弱。胜北断层、永北断层属于陈南断层的主要伴生断层。它们是控制...

动载荷作用下的裂纹
答:对于线弹性体中的Ⅰ型静止裂纹,根据弹性动力学,裂纹尖端的应力场和位移场可以仿照静态断裂力学表示为 岩石断裂与损伤 岩石断裂与损伤 式中k由下式确定:岩石断裂与损伤 不难看出,与静态问题类似,裂纹尖端附近的动态应力场...