新疆蒙其古尔特大型铀矿床 伊犁盆地煤铀金铜铅锌成矿带

作者&投稿:聂言 (若有异议请与网页底部的电邮联系)

张占峰 王果 蒋宏 任满船 文战久 康勇 李彦龙

(核工业二一六大队,新疆 乌鲁木齐 830011)

[摘要]蒙其古尔铀矿床是“十一五”期间伊犁盆地南缘铀矿找矿勘查的重要成果,矿床的发现和勘查经历了预测评价、钻探查证、成矿规律深化和再认识、矿体控制和资源量扩大等阶段,是成矿理论完善和找矿勘查实践相互促进、共同深化的典型范例。一系列的勘查和科研工作仍在进行中,控制和预测资源量有望达到超大型规模。该矿床资源储量规模大,具备较好的地浸开采条件,“十二五”期间已经列为大型地浸铀矿山的重点建设项目。

[关键词]蒙其古尔;特大型铀矿床;铀矿勘查;地浸

蒙其古尔特大型铀矿床位于新疆察布查尔县境内,是继库捷尔太、扎吉斯坦和乌库尔其铀矿床后在伊犁盆地南缘落实的第四个可地浸砂岩型铀矿床。

1 发现和勘查过程

蒙其古尔铀矿床最早发现于20世纪50年代中后期,60年代至90年代勘查停滞。2000年至2013年,核工业二一六大队在蒙其古尔地区开展了系统的铀矿找矿勘查,先后有大调查和地勘费项目在蒙其古尔地区发现工业铀矿化;随后以“攻深追控、多层同步、分段勘查”的总体工作思路开展了普查和详查工作,目前矿床已达到特大型规模。

1.1 煤岩型铀矿勘查

20世纪50年代中后期至60年代中期,原二机部519大队在伊犁盆地南缘开展了1∶2000爱曼详测,首次发现了蒙其古尔地区煤岩型铀矿化,1963年完成矿床(510矿床)详勘工作,累计投入钻探工作量88079m,同时开展了伽马测井、地球物理测井、槽探、岩矿心放射性编录及抽水试验。大部分钻孔分布于矿区南部控盆F1断裂的两侧且只揭露到第八煤层底板,仅少数钻孔揭穿了西山窑组。在煤岩型铀矿勘查过程中,于1958年在西山窑组下段发现了砂岩型铀矿化信息,但未进一步工作。1964年,提交了最终储量报告,煤岩型铀资源量达到大型规模。

1.2 砂岩型铀矿勘查

1.2.1 成矿预测与钻探查证

20世纪80年代末期,伊犁盆地作为寻找北方中新生代盆地中大型可地浸砂岩型铀矿床的突破口,开展了大量的“产学研”相结合的铀矿勘查工作,对蒙其古尔地区砂岩型铀矿成矿地质条件和成矿远景做了分析和研究。原519大队已在蒙其古尔地区西山窑组下段砂体中发现的砂岩型铀矿化信息,对该地区的后期地浸砂岩型铀矿找矿工作起到了很重要的作用。

2000~2002年,以伊犁盆地中西段远景调查(国土资源大调查项目)为支撑,核工业二一六大队在蒙其古尔地区开展了砂岩型铀矿找矿勘查,其中ZK A5612、ZKA560和ZK202在蒙其古尔地区揭露到三工河组(J1s)及西山窑组下段(J2x1)工业铀矿化。与此同时,扎吉斯坦铀矿床第Ⅴ旋回16~7号线勘探项目在蒙其古尔地区布置了3个钻孔,其中ZK4101、ZK2701孔发现了西山窑组上段(J2x3)工业铀矿化,初步揭示了蒙其古尔特大型铀矿床多层位产出的特点[1,2]

1.2.2 矿床勘查和成矿理论深化

2003~2004年,核工业二一六大队承担中国核工业地质局下达的项目,在伊犁盆地南缘中西段开展铀矿预查工作,对蒙其古尔地区三工河组(J1s)和西山窑组(J2x)铀矿化进行了系统探索,初步推测出3条工业铀矿带,估算铀资源量达到小型规模。

2005~2007年,中国核工业地质局在蒙其古尔矿床P0~P55线部署普查工作。按照“探索、扩大和控制”的原则,以137°勘探线方向、400m×(400~200)m的基本间距部署工程。开设7条勘探线,投入钻探工作量30950m,施工钻孔51个,开展了地浸水文地质条件评价和矿体放射性平衡破坏规律研究,估算资源量接近大型铀矿床规模[3]

2008~2012年,按照“控制和落实”的原则,分别在PO~P31线和P35~P55线两个地段开展详查,以137°勘探线方向、200m×(200~100)m的基本工程间距布置钻孔204个,累计投入钻探工作量133763m,进一步查明了矿床地浸条件和矿体放射性特征,累计控制资源量接近特大型铀矿床规模[4,5]

2011年以来,以核工业天山铀业公司为投资主体,在P0~P55线间分区块陆续开展了勘探,已累计投入钻探工作量59870m,施工钻孔126个。

P0~P55线详查结束后,控制矿体数增加到6个,资源量较普查增长一倍。成果的取得得益于对蒙其古尔矿床地质特征和成矿规律的深入研究,尤其是认识到层间地下水侧向氧化作用形成“双矿带”和“溢流”作用形成三工河组上段工业铀矿体的成矿规律,指导了矿床的快速扩大。同时,P0~P55线详查研究成果和认识应用到P0线以西普查和P55线以东探索工作中也取得较好的效果。

1.2.3 深部勘查和外围扩大

2006~2007年,伊犁盆地巩留凹陷铀资源评价项目率先在蒙其古尔矿床P55线以东的郎卡地区开展钻探查证工作,在800m深度揭露到三工河组工业铀矿化,通过分析认为揭露的铀矿体极有可能是蒙其古尔矿床铀矿体向东的延续,紧紧抓住“深部富矿、多层成矿、变形构造”等关键因素,工业铀矿带长度由此扩大到2.8km[6]。以此为依据,2008年在郎卡地区实施了铼矿预查(新疆维吾尔自治区资源补偿费地质勘查项目),投入钻探工作量2141m,新增了部分铀资源量[7]

2009~2012年,以勘查项目为支撑,核工业二一六大队在蒙其古尔矿床P0~P55线外围陆续投入钻探工作量5300余米,资源量进一步得到落实和扩大。

2013年,在蒙其古尔矿床P0线以西开展铀矿普查,以137°勘探线方向、400m×200m的基本工程间距部署13条勘探线,投入钻探工作量15280m,施工钻孔37个,估算资源量(333+3341)达小型铀矿床规模,证实PO线以西铀矿体与P0~P55线铀矿体是连续产出的。与此同时,以伊犁盆地苏东布拉克地区铀矿预查项目为支撑,以郎卡地区找矿成果为依据,继续向东探索铀成矿条件和潜力,陆续施工了L2004、L2014和L4014,发现西山窑组下段工业铀矿化,矿带规模再次由郎卡地区东扩2km。

2 矿床基本特征

2.1 地层

中新生代盖层不整合覆盖于石炭系或二叠系中酸性火山岩、火山碎屑岩之上,缺失三叠系和上侏罗统。自下而上依次由中下侏罗统水西沟群(J1-2sh)陆相含煤碎屑岩沉积、中侏罗统头屯河组(J2t)河流相沉积、白垩系(K)和古近系(E)红色碎屑岩建造和第四系(Q)冲洪积物组成,铀矿化赋存于潮湿气候条件下形成的中下侏罗统水西沟群含煤碎屑沉积建造中,其中主含矿层位为三工河组和西山窑组,具有泥—砂—泥(煤)互层沉积特征。以沉积韵律特征为依据,将水西沟群自下而上划分为第Ⅰ—Ⅶ沉积旋回(图1)。

三工河组(J1s):对应于水西沟群V1亚旋回—

亚旋回,主体为扇三角洲平原—冲积扇、辫状河沉积体系。垂向上由两个正韵律层组成,正韵律层自下而上由含砾粗砂岩、中细砂岩向粉砂岩、泥岩过渡。根据其发育特点,将三工河组分为上、下两段,上段(J1s2)厚9~25m,下段(J1s1)厚6.8~21.6m,局部地段两者合为一体。总体上砂体广泛发育,连通性较好。

西山窑组(J2x):对应于水西沟群

亚旋回—Ⅶ旋回,根据其沉积特点,分为上、中、下3段。下段(J2x1)厚50~75m,由下粗上细的两个正韵律沉积组合构成,主体为扇三角洲平原沉积体系,砂体多数地段由2~3个主砂体组成,总体发育且连续性好;中段(J2x2)厚12.60~56.60m,主体为冲积扇—辫状河沉积,层间砂体总体不发育;上段(J2x3)厚20.60~116.00m,为辫状河三角洲平原沉积体系,发育两层主砂体,砂体稳定性相对较差,仅在下层砂体中发现工业铀矿化。

2.2 构造

蒙其古尔矿床位于伊犁盆地南缘斜坡带东段构造相对活动区内,属于次级构造单元扎吉斯坦向斜东南翼的组成部分,该向斜整体上呈东、西、南三面翘起,向北东方向敞开的屉状向斜构造形态,向斜的轴部位于扎吉斯坦河河谷地段,倾向45°~48°,倾角6°~8°(图2)。

鉴于地层、构造和水文地质特征的差异,以F3断裂为界,将扎吉斯坦向斜划分为东西两个构造单元。西构造单元产出扎吉斯坦矿床,东构造单元产出蒙其古尔矿床。其中东构造单元盆缘中生代地层与古生代地层多呈断层接触,含矿建造埋深大于西构造单元。矿床总体上夹持于F3断裂和控盆F1断裂之间,矿区范围内,中生代地层呈向北东倾的单斜产出,产状相对平缓,倾角3°~9°,平均为6°。受盆缘逆冲作用,矿区东南边缘中生代地层翘起,直立甚至倒转,局部古生代地层逆冲于中生代地层之上。

图1 蒙其古尔地区地层综合柱状图

图2 蒙其古尔地区地质简图

1—古近系;2—白垩系;3—侏罗系;4—石炭系-二叠系;5—煤岩;6—烧结岩;7—泥岩;8—砂岩;9—地质界线;10—断裂及编号;11—推测断层;12—水系;13—补给区地表水流向;14—径流区地下水流向

2.3 水文地质特征

(1)地下水补径排体系

中下侏罗统水西沟群碎屑岩类孔隙裂隙水构成矿床的主要成矿地下水。由南部蚀源区补水、矿区径流、盆内排泄构成完整的地下水补径排体系,具体的排泄区或局部排泄源位置尚未能完全查清。

矿床地下水主要来源于西南部扎吉斯坦河上游的入渗水,补给区侏罗系露头面积752000m2,补给海拔1320~1450m。河水流量在补给区平均损失68976m3/d,属于开启型水动力窗口。F1断裂在P0~P47线间构造破碎形成水动力窗,水西沟群出露地表面积360000m2,补给海拔1322~1552m,蒙其古尔沟等河水入渗量约289m3/d。

矿区内地下水径流范围位于F1和F3两条阻水断裂之间,主要流向为47°,侏罗纪地层呈3°~9°向北东方向缓倾,水力坡度为0.02~0.20,地下水流速为0.01~0.11m/d,导水系数0.47~42.78m2/d,水位埋深一般在-50.28~110.26m之间。

(2)水文地球化学特征

从盆地南缘补给区到盆地内部,入渗补给水中的H CO3参与络合离子

的形成过程,沿层间氧化带发育方向地下水水质类型逐渐转变为SO4· HCO3、SO4·HCO3·Cl和SO4·Cl型(图3);矿化度逐渐增高,溶解氧降低,Eh急剧下降,还原性气体含量增高,地下水由弱碱性逐渐转变为弱酸性和中性(表1)。

图3 蒙其古尔铀矿床P0~P55线地下水水化学

1—断层;2—河流;3—泉及编号;4—水文孔及编号;5—水井及编号;6—地下水流向;7—水化学类型;8—水化学类型分界线

表1 蒙其古尔铀矿床P0~P55线水文地球化学分带参数

(3)地浸开采水文地质条件

矿床补径排体系完整,含矿含水层厚度适中,各含矿含水层顶、底板隔水层厚3.57~18.22m,总体较为稳定。三工河组含水层J1s1 和J1s2 之间的隔水层在27~55线南段存在普遍缺失现象,缺失面积较大;主含矿含水层三工河组和西山窑组下段渗透系数分别为0.32~1.28m/d和0.21~0.68m/d,渗透性能较好;矿床内地下水水位埋深浅,为5.89~110.26m,承压水头高度为195.14~548.10m;矿体赋存地段地下水矿化度低,总体呈中性,氧化还原电位均大于0。矿床水文地质条件总体适于地浸开采[4~5]

2.4 层间氧化带及铀矿体

蒙其古尔地区共发育4层规模较大的层间氧化带和砂岩型工业铀矿体,分别赋存于三工河组下段、三工河组上段、西山窑组下段和西山窑组上段砂体中。在复杂的地下水“双通道的补水”和“层间溢流”补径排体系作用下,矿床范围内各含矿含水层不仅发育一个层间氧化带和铀矿体,而且在平面上,各层间氧化带前锋线呈蛇曲状或港湾状展布,互有交叉和叠置,有的分为南、北两段,有的分为东、西两段。受层间氧化带发育形态控制,矿体形态各异,各层位矿体平面上互相叠置,空间关系较复杂。三工河组下段、三工河组上段和西山窑组下段均发育南、北两个矿带,西山窑组上段矿带分为东、西两个矿带(图4)。

图4 蒙其古尔地区砂岩型铀矿综合成果

1—第四系;2—二叠系乌郎组;3—烧结岩;4—煤层及编号;5—不整合界面;6—整合或侵入接触界线;7—河流;8—逆断层、性质不明断层、推测断层及平移断层;9—三工河组下段层间氧化带前锋线及铀矿带;10—三工河组上段层间氧化带前锋线及铀矿带;11—西山窑组下段层间氧化带前锋线及铀矿带;12—西山窑组上段层间氧化带前锋线及铀矿带;13—已预查、普查、详查、勘探区

工业铀矿体平面上产出在层间氧化带前锋线前后50~800m范围内,一般在300m范围以内。三工河组下段铀矿体形态为卷形产出特征,工业铀矿体主要由卷头部分构成,多呈长头短翼形态产出,翼部矿体不太发育;三工河组上段北矿带在含矿流体溢流作用下形成了品位高、厚度大的富大矿体,同时,矿体形态复杂,剖面上总体呈环形的卷状产出;西山窑组下段工业矿体有少量短头长翼的卷状形态,大部分地段缺失卷头,翼部矿体的增多导致矿体面积增大;西山窑组上段发育大规模铀矿化而工业铀矿体少,矿体多为板状和透镜状,分布较零乱。

层间氧化带和铀矿带总体长度大于10km,勘查程度不一,其中P0~P55线已完成详查工作,其他地段工作程度未及普查。PO~P55线范围内,工业矿体长700~2800m,宽25~680m;矿体走向总体为北东向,倾角4°~8°,平均为6°;矿体埋深288.45~666.55m,西浅东深。表现为中部平缓,西部和东部产状略陡的产出特征(表2)。

表2 蒙其古尔铀矿床P0~P55线矿体产出特征统计

垂直于层间地下水径流方向的剖面上,层间氧化带和铀矿体在F1、F2和F3断裂夹持区内呈叠瓦状排列,矿体垂向上产出位置距离层间氧化-还原界面在10m以内,大多数情况下不大于3m。层间含氧含铀水的侧向氧化-还原作用形成三工河组、西山窑组相反方向发育的两个卷形矿体或环形卷状矿体(图5)。

工业矿体平均厚4.2m,平均品位0.0833%,平均平米铀量为7.04kg/m2,最大平米铀量可达82.59kg/m2。三工河组工业铀矿体平均品位大于0.1%,平均厚度大于4m,富大矿体的空间分布与层间氧化带前锋线趋于吻合,前锋线附近矿体品位高(>0.2%)、厚度大(>6m),向氧化带一侧逐渐降低,向原生岩石带一侧快速减小;西山窑组工业卷状铀矿体较少,部分矿体与层间氧化带前锋线的依存关系不很明显,富大矿体呈团块状分布,矿体品位、厚度由中心向四周逐渐降低(表3)。

表3 蒙其古尔铀矿床P0~P55线工业铀矿体厚度、品位、平米铀量统计

2.5 矿石物质成分及铀存在形式

利用显微镜、扫描电镜、电子探针、化学分析等方法开展了矿石物质成分及铀存在形式研究。

矿石自然类型为疏松砂岩型铀矿,是在低温条件下形成的,矿石在其矿物组成上与围岩无明显差别,均为硅酸盐矿物集合体。矿石中矿物以石英、岩屑和长石为主;含少量云母、黄铁矿及重矿物(磁铁矿、钛铁矿)。黏土矿物主要有高岭石、伊利石、伊蒙混层、蒙脱石及绿泥石。

取自不同矿化层位的27个铀矿石样品中,有17个样品中铀以铀矿物、分散吸附和类质同象混入物形式3种形态产出;有10个样品中铀呈分散吸附和少量类质同象形式存在。

图5 蒙其古尔—扎吉斯坦矿床纵剖面

1—基底岩石;2—泥岩;3—煤层;4—氧化带前锋线;5—矿体;6—断裂及编号

质同象混入物形式3种形态产出;有10个样品中铀呈分散吸附和少量类质同象形式存在。

铀矿物主要产出于品位较高的矿石中,在大部分的贫矿石中也可发现铀矿物,但含量要小得多。绝大部分样品中的铀矿物主要为显微状沥青铀矿(含少量再生铀黑?),其次为水硅铀矿和钛铀矿。铀含量达2%的灰黑色含层状炭屑粗砂岩样品中,沥青铀矿呈葡萄状分布于蜂窝状炭屑胞腔内(图6~图9)[4~5]

图6 高品位矿石样品中富含炭块、炭屑和丝炭岩心

图7 同一样品具蜂窝状胞腔结构,炭屑微区外貌光片,单偏光

图8 炭屑胞腔充填大量球粒状沥青铀矿,扫描电镜明场像

图9 单个胞腔中大量葡萄状沥青铀矿,扫描电镜明场像

2.6 矿体放射性平衡特征

P0~P55线间共施工物探参数孔14个,深入研究了矿体镭氡放射性平衡特征,计算修正值系数介于0.72~0.89之间,表明矿体总体偏铀。

共采集铀镭放射性平衡系数样品1758件,统计结果表明,矿层铀镭平衡系数无显著差异,介于0.90~1.10之间,表明各矿层铀镭处于平衡状态[4~5]

2.7 成矿年龄

取自不同赋矿层位、矿体不同部位(以卷头和接近卷头部位为主)的16个高品位矿石样品的沥青铀矿表观铀成矿年龄分布于0.25~153Ma之间,206Pb/238U表观年龄集中分布于4.1~11.5Ma之间,为蒙其古尔铀矿床的主成矿期。选择5个样品进行了铀系不平衡年龄测试,其中有3个样品的铀系不平衡年龄介于0.32~0.40Ma之间,对应的放射性活度比均明显处于放射性不平衡状态,表明沥青铀矿生成的时间较短,矿石年龄较小的样品占有一定的比例,矿床仍处于不断富集和成长阶段。

加拿大Manitoba大学Fayek教授测试了蒙其古尔铀矿床3个矿石样品中铀矿物的铅化学年龄,并由此推算了铀矿物年龄,结果基本相同[4~5]

2.8 共、伴生矿产

Se、Mo、Re元素的富集与层间氧化作用有关,与铀矿体在空间上拟合性较好。以组合取样方式对铀矿石及其围岩开展了伴生元素Se、Mo、Re、V、Ga、Ge含量测试。分析结果表明:Mo、V、Ga、Ge仅个别样品含量达到综合利用指标;Se含量变化较大,难以圈连矿体;Re元素达到综合利用指标,且具有一定的成矿规模,可在地浸开采铀的过程中综合开发利用。

矿床范围内煤炭资源丰富,估算资源量较为可观。

3 主要成果和创新点

3.1 主要成果

1)蒙其古尔特大型铀矿床取得重大突破是中核集团建设“铀矿大基地”指导思想在伊犁盆地得以落实的体现。从2000年中国地质调查局大调查项目在蒙其古尔地区取得找矿突破开始,中央财政地勘费和中核集团相继投入超过20×104 m钻探工作量,随着蒙其古尔矿床的持续勘查,控制资源量不断增加,矿床资源/储量(333及以上类型)已达到特大型规模。

2)分地段、分区块总体查明了蒙其古尔地区水文地质构造特征及地下水补径排机制,基本查明了矿床P0~P55线各含矿含水层的分布、结构、规模及埋深特征;通过水文地质孔抽水试验,查明了各含矿含水层的渗透系数、涌水量、承压水头高度、地下水pH 值、Eh值、矿化度等水文地质参数及水文地球化学参数。

3)重点在P0~P55线范围开展了详细的矿体放射性平衡破坏规律研究,确定了铀镭平衡系数和镭氡平衡系数,为资源量估算过程中γ测井解释结果的修正提供了可靠的依据。

4)从矿体空间构形和变异性、矿石质量、水工环条件等方面,开展了大量地浸条件分析评价工作。认为矿体产状平缓,具有厚度大、平米铀量高的特性,为优良资源;矿石及围岩的物质成分适合地浸,矿石中的铀容易浸出;隔水层分布基本稳定,含矿含水层的承压性和渗透性高、水位埋深浅、涌水量较大,矿化度低,地浸条件好。

3.2 主要创新点

(1)探采一体化勘查开发工作方法的创新

在伊犁盆地系统使用分阶段、分区块开展矿床勘查和外围探索相结合的探矿模式,地矿深度联合,开发及时跟进,探采一体化取得了良好的效果。

2007年蒙其古尔矿床P0~P55线普查结束时,已开始着手安排P0~P55线外围勘查和矿山地浸试验事宜。目前已完成P0~P31线和P35~P55线详查,正在开展P0线以西普查和P55线以东评价及预查工作。

地浸开采试验始于2009年并于当年取得较好的试验结果,2013年完成了矿山“一期”工程建设。随着P0~P55线详查、P0线以西普查和P55线以东评价及预查工作不断取得新成果,矿山“二期”和“三期”工程建设已列入日程安排。

(2)勘查技术手段的创新

在蒙其古尔铀矿床勘查过程中运用车载式井中电磁流量仪和车载式井中水位仪技术,降低了水文地质孔施工成本,简化了抽水试验工作程序,排除了人为干扰因素,取得了更为精确的批量水文地质参数,真实反演了地下水流场,建立了“双通道”和“溢流”成矿作用的地下水补径排机制,为蒙其古尔铀矿床成因研究和成矿模式建立提供了水文地质依据。

(3)成矿理论的深化创新

蒙其古尔铀矿床的发现不仅是铀矿找矿勘查成果的重大突破,其成矿模式也丰富了砂岩型铀矿成矿理论,为进一步在中新生代盆地构造活动区找矿提供了一个“动中找静”的典型实例。

该矿床无论从成矿条件、矿体特征还是成矿模式上,均有别于伊犁盆地南缘其他矿床:蒙其古尔地区褶皱、断裂发育的构造产出特征成因于新构造运动以来多期次构造活动,较为强烈的构造运动为层间氧化作用提供势能的同时,控矿断裂产出部位及性质决定了地下水补径排、层间氧化带和铀矿化发育方式和空间位置。地下水的双补水通道和径流模式决定了铀的迁移路径和有利的沉淀富集部位,构成了以“双矿带”和“溢流”成矿为特征的“蒙其古尔式”成矿模式(图10)。

(4)地浸开采工艺的创新

蒙其古尔铀矿床P0~P31线详查时已注意到富大铀矿体形成于高反差的地球化学障附近,一系列的地球化学元素发生化学反应的同时形成了局部高钙含量的矿石。针对这一矿床地质特征,地浸试验最终采用CO2+O2浸出工艺,浸出效果较好。

蒙其古尔矿床和层位矿体空间上呈叠瓦状排列,目前正在开展单孔多层注浸开采工艺试验,该方法能够大幅度降低地浸开采过程中钻探施工的成本。

4 开发利用状况

510地浸试验队于2009年6月成立,当年开始在蒙其古尔铀矿床P0线开展地浸条件试验。2010年4月,在条件试验取得良好浸出效果的基础上,进一步开展蒙其古尔矿床扩大试验项目研究工作。现场地浸试验采用CO2+O2浸出工艺。试验取得了采冶关键技术的突破,获得了成熟可靠的开采工艺。

按照新疆铀矿冶大基地建设规划,蒙其古尔地浸采铀工程计划按3期进行建设,其中,“一期”工程于2011年启动,2014年试生产,2015年达产;“二期”工程于2014年启动,2016年试生产,2017年达产;“三期”工程于2017年启动,2019年试生产。

图10 “蒙其古尔式”层间氧化带砂岩型铀矿成矿模式

1—火山岩;2—层间砂体;3—泥质隔水层;4—整合及不整合地质界线;5—层间氧化带及铀矿体;6—地下水流向

5 结束语

蒙其古尔地区砂岩型铀矿找矿勘查实践过程充分体现了铀矿找矿工作的反复性和长期性。勘查成果的重大突破得益于对成矿规律认识的提高,尤其是详查阶段成矿模式的建立对资源量持续扩大至关重要。加强生产过程中的科研工作,完善成矿理论并指导勘查是成果扩大的有力保障。

蒙其古尔矿床勘查过程中引入了浅层地震、音频大地电磁测深物探方法,解决了控矿构造、地下水动力场研究中的部分问题,为矿床成因分析提供了支撑。同时,蒙其古尔铀矿床地下水动力机制复杂,未能采用有效方法查明成矿流体补径排机制,尤其是三工河组上段“溢流”成矿模式缺乏数据的支持,只停留在理论推测阶段,需要在找矿技术和方法方面进一步加以创新。

蒙其古尔矿床夹持于F1和F3两大断裂之间,只是蒙其古尔构造单元内铀矿带的一部分,该铀矿带西起乌库尔其,东至郎卡,矿带长度超过10km,现已探明的乌库尔其—扎吉斯坦—蒙其古尔3个地段,本质上是同属一个特大型铀矿床[1] 。构造单元内相同的构造、沉积特征和相似的水动力体系预示着该构造单元内蕴藏着很大的成矿潜力,有待进一步勘查和研究。

参考文献

[1]张金带.进入新世纪以来铀矿地质工作的探索与实践[M].北京:中国原子能出版社,2013:1-28.

[2]李彦龙,魏周政,等.新疆察布查尔县加格斯泰地区铀矿评价报告[R].乌鲁木齐:核工业二一六大队,2002.

[3]刘陶勇,李彦龙,等.新疆察布查尔县蒙其古尔地区P0~P55铀矿普查报告[R].乌鲁木齐:核工业二一六大队,2008.

[4]张占峰,蒋宏,等.新疆察布查尔县蒙其古尔铀矿床PO~P31线详查地质报告[R].乌鲁木齐:核工业二一六大队,2009.

[5]张占峰,蒋宏,等.新疆察布查尔县蒙其古尔铀矿床P35~P55线详查地质[R].乌鲁木齐:核工业二一六大队,2007.

[6]张占峰,司基宏,等.新疆伊犁盆地巩留凹陷1∶25万铀资源区域评价报告[R].乌鲁木齐:核工业二一六大队,2007.

[7]张占峰,周剑,等.新疆察布查尔县郎卡地区铼矿预查[R].乌鲁木齐:核工业二一六大队,2008.

我国铀矿勘查的重大进展和突破进-—入新世纪以来新发现和探明的铀矿床实例

[作者简介]张占峰,男,1970年出生,研究员级高级工程师。1991年毕业于华东地质学院地质系铀矿勘查专业,2010年毕业于成都理工大学核自院核技术与应用专业,获硕士学位。2012年以来任核工业二一六大队副总工程师、地质科技处处长。长期从事铀矿地质勘查及科研工作,2007年获国家科技进步一等奖,2009年获“全国十大找矿成果奖”、国防科技进步奖、中核集团公司找矿成果奖等。



其他非金属矿床及能源矿床~

一、产于前寒武纪变质基底中的金刚石矿床
分布于科克切塔夫地块中与榴辉岩有成因联系。科克切塔夫地区的库姆的—科尔金刚石矿床是世界上唯一的变质金刚石矿。现已控制的金刚石储量达到30万克拉以上。
该矿床产于科克切塔夫变质杂岩的中心部位附近的库姆的湖附近,矿区由黑云母片麻岩(含榴辉岩透镜体)、混合岩、绿泥石—透闪石石英岩、辉石—石榴子石大理岩以及泥盆纪花岗岩组成。含金刚石的石榴子石—黑云母片麻岩的云母 Ar/Ar年龄为515~517Ma。
金刚石分布在黑云母片麻岩(通道的240~244m处)、石榴子石—辉石—石英岩(256~260m处)和大理岩(300~303m 处)中。黑云母片麻岩、阳起石—绿泥石—电气石—石英岩中含金刚石,这些岩石(包括强烈退变的岩石)占该矿床含金刚石岩石的85%,白云石大理石和石榴子石—辉石岩在体积上占矿石的约15%。
矿床的平均品位为20克拉/t,金刚石在不同岩石类型中的分布很不均匀,石榴子石—辉石岩和白云母大理岩富含金刚石,超过1000克拉/t。金刚石颗粒大小一般在10~20μm之间,少数超过30μm,多数呈金刚石聚晶,具不规则外形。不少专家对本区含金刚石大理岩的研究证明,本区变质岩是地壳物质俯冲到地幔>240km深处后折返的产物。
这些金刚石均为变质金刚石,其外形与金伯利岩和钾镁煌斑岩中的金刚石完全不同。虽然也存在完整八面体,但主要表现出蜂窝状或草莓状,显然是在快速生长条件下结晶的结果。如此快速的金刚石生长发生在大陆地壳物质在俯冲带中的深循环过程中。本区含金刚石大理岩是目前报道的俯冲到>240km深度地壳物质的唯一实例。并认为该矿床中的金刚石物质来源是俯冲到>240km深度的碳酸盐岩。在后期退变过程中部分金刚石转变成石墨。
此外,在印度不整合于中元古界上的新元古界温德亚群,下亚群以碳酸盐岩为主,上亚群为砂、页岩夹灰岩其中含两层金刚石砾岩。
二、铝土矿
主要产于图尔盖盆地东西两侧及田吉兹盆地内,后者是哈萨克斯坦最主要的铝土矿产地。属岩溶型铁—高岭石—三水铝石、产于白垩纪—古近纪沉积盖层下的老地层粘土风化壳中。其中以阿尔卡雷克、乌什托宾、切利诺克勒矿床最重要并成为帕夫洛达铝厂的主要原料基地。
印度铝土矿资源也十分丰富,探明储量27×108t,居世界第五位,主要为风化残积型,以三水型铝土矿石为主。另外,在印度以德干玄武岩为原岩的铝土矿也有重要意义。
三、磷、钒矿
主要分布在乌卢套的拜科努尔至卡拉套地块内,以寒武纪底部的含磷层为主,除磷钒可形成大—超大型矿床外,还伴生铀矿。
蒙古国具有丰富的磷酸盐资源,主要集中在与俄罗斯接壤的库苏泊含磷盆地中,盆地南北长300km,宽30~60km,内有31个磷矿床(点),储量大约为24×108t。其中八个较大矿床中的Burenkhaa磷矿,位于额尔登特铜矿西北370km,Khovsgol湖以南100km,磷酸盐岩中的P2O5平均品位20%,总储量3×108t,其中1.92×108t可露天开采。
新疆磷矿资源主要分布于塔里木盆地周缘,产于寒武纪被动大陆边缘的硅质含磷建造中,有的还含铀、钒。一般以中-小型矿床为主。
四、能源矿产
中亚能源矿产资源丰富,卡拉库姆(土库曼斯坦、乌兹别克斯坦)、滨里海盆地(哈萨克斯坦)被称为亚洲十大重要产油气盆地之一;煤在中亚国家中以哈萨克斯坦、乌兹别克斯坦、吉尔吉斯斯坦资料量较丰富;亚洲铀资源量丰富,但分布不均,主要集中在中亚地区的中克孜勒库姆盆地、锡尔河盆地、楚萨雷苏前盆地和费尔干纳盆地等,现分别简述于下:
(一)油气
能源矿产在哈萨克斯坦占有重要地位。已证实的石油和凝析油地质储量为85×108t天然气量为9000×108m3。已查明的218个油气矿床中投入开采的有70个。储量巨大的油田有:田吉兹、乌泽尔、卡拉姆卡斯、日纳诺尔、卡拉赞巴斯、库姆科里、北布扎奇、日特尔、巴依、阿利贝克莫拉。储量巨大的天然气田有:卡拉哈甘纳克、伊马谢夫、乌连赫套、契纳列夫。所有储量巨大的油气田,如田吉兹、卡拉哈甘纳克、乌泽尔、日纳塔尔、卡拉姆卡斯等都位于西哈萨克斯坦,而东哈萨克斯坦只有一个大型油田——库姆科里。西哈萨克斯坦又以滨里海盆地最重要,其含油气量将超过哈萨克斯坦探明的油气储量。
在滨里海盆地,无论是在陆上或是海域,含盐地层之上的中生代沉积物的油气潜力相对来说更大。在南图尔盖、咸海、斋桑等盆地中也有发现新油气田的可能。
此外,乌兹别克斯坦、土库曼斯坦都是重要的石油、天然气资源产地。西土库曼盆地属南里海盆地的一部分,主要生油岩为渐新统—中新统Maykop群页岩,成熟生油岩段一般认为是侏罗系—上新统页岩和灰岩。
新疆是我国重要油气资源基地,经过数十年石油科技工作者的艰苦努力,对塔里木、准噶尔、吐哈、三塘湖和焉耆等盆地的油气分布范围进行了确定;搞清了塔里木盆地有7个面积大于 20000km2生油坳陷,从6×108年的震旦纪地层至距今300×104a的古近纪、新近纪都有生油层。主要生油层为寒武纪、奥陶纪、石炭纪、二叠纪、三叠纪、侏罗纪、白垩纪、古近纪、新近纪等地层,生油层累计厚度约 3800m,模拟计算石油、天然气总资源量229×108t,其中石油115×108t、天然气11.4×1012m3。准噶尔盆地共有10个面积合计5.6×104km2的生油坳陷,生油层为石炭系、二叠系、三叠系、侏罗系、白垩系、古近系、新近系。生油层厚度累计约4000余米,模拟计算石油、天然气总资源量106.8×108t,其中石油85.7×108t、天然气2.1×1012m3。吐哈盆地,二叠纪、三叠纪、侏罗纪地层都有生油潜力,累计生油层厚1100~1300m,生油层系分布面积约2.8×104km2,模拟计算石油、天然气总资源量16.12×108t,其中石油15.75×108t,天然气3700×108m3。
此外,三塘湖、焉耆、伊宁等小盆地,总资源量估计约12×108t。可见新疆石油、天然气总资源量为365×108t,其中石油227×108t,天然气13.8×1012m3,约占全国陆地油气资源总量的三分之一。占我国西北地区油气资源总量的80%。随着油气勘探、开发的不断深入,新的油气资源量将会不断增加。更多的油气田等待我们去发现。
(二)煤
哈萨克斯坦总储量估计为2000×108t,已查明的400多个煤矿床中,有300×108t 探明储量。其资源量主要集中在中哈萨克斯坦,这里勘探和开采着三个巨大煤田:卡拉甘达煤田,储量大于500×108t;埃基巴斯图兹煤田,储量90×108t左右,此两煤田含煤层位为石炭纪,迈科普煤田储量50×108t,含煤层位为侏罗纪。此外舒巴尔科里煤田储量15×108t;在图尔盖坳陷中也查明了巨大的煤炭资源量,总储量达900×108t,如奥尔洛夫、克孜尔塔拉等矿床储量都在10×108t以上。在图尔盖坳陷南部查明有日兰什克煤田总储量估计有140×108t;在哈萨克斯坦南部地区具有工业意义的煤层产于侏罗系中,最大的下伊犁煤矿,探明储量达32×108t;哈萨克斯坦东部地区含煤层为二叠系和侏罗系,目前开采的肯季尔雷和尤比列伊矿床,后者储量达14×108t;西哈萨克斯坦煤炭资源较少,只有阿克纠宾斯克州的乌拉尔矿床具开发意义,储量约15×108t。
蒙古国有300个煤矿和矿化点,分布在12个含煤盆地中,推测储量1520×108t,其中 20%为炼焦煤,百分之80为褐煤或锅炉用煤,被证实的储量为200×108t。目前蒙古国的煤主要产自四个煤矿,约占全国产量的90%。最具有潜力的是塔旺托勒盖超大型煤矿,被认为是世界上未被开采的最大煤矿,方圆90km2含高品位煤,位于南戈壁省的Ulannuur含煤盆地中。
该煤矿赋存于大型向斜构造中,含煤岩系为晚二叠世砾岩、砂岩、粘土岩和含煤层,含煤岩系为几条主干断裂分割为多个次级块体。矿床地表面积250km2含煤地层厚达2000m,共有16个含煤层,平均厚度2.5~21m 不等,单个含煤层厚度从0.3~46.5m 。含煤层分上部和下部两组,下部粒度较粗含煤层厚度较大,上部由粉砂岩、泥岩组成含煤层厚度较小。在向斜构造中央部位煤层最厚为163m。该煤矿储量大约为50×108t,其中28×108t 适合露天开采,目前因资金不足尚未大规模开采。
Ulannuur盆地包括塔旺托勒盖煤矿共有四个煤矿,总储量约70×108t,其中40×108t为各种质量的炼焦煤,35×108t适合露天开采。
新疆地域辽阔,煤炭资源丰富。已发现大、小含煤盆地27个,含煤面积约31×104km2。预测2000m 浅煤炭资源量2.19×1012t,占全国预测资源总量 40%,居全国首位。目前已发现煤矿产地187处,其中大型煤矿 20处,中型煤矿57处。已探明储量345×108t,居全国第五位。煤层多、厚度大,单层最大厚度达146.95m。煤层埋藏浅有的露出地表,不少可露天开采。煤品种、牌号齐全,煤质优良。新疆可划分为阿尔泰、准噶尔、天山、塔里木、昆仑五个含煤区,含27个含煤盆地、57个煤田。由于塔里木、吐鲁番、准噶尔盆地中心煤层埋藏深,超过3000m,现阶段不具开采价值,故预测资源量主要分布在准噶尔盆地周缘、天山山间盆地及塔里木盆地北缘等。煤炭资源主要集中在准东煤田、沙尔湖煤田、伊宁煤田、托里-和什托洛盖煤田、库车-拜城煤田等主要煤田内。
其中准东、沙尔湖、伊宁、吐鲁番、大南湖等五煤田预测资源量均超过1000×108t。含煤地层以下、中侏罗统为主,特别是北疆、东疆地区分布面积广,含煤性好。泥盆纪、石炭纪、二叠纪地层仅见个别地区含煤层,且分布面积小,厚度薄而不稳定,质量差不成规模。
(三)铀
哈萨克斯坦铀储量和资源量约为150×104t。已探明总储量(B+C1+C2级)为567700t,为总储量的49.4%。其中417500t(72.4%)储量的成本为低于80 美元/kg、159200t(27.6%)为80~130 美元/kg。
哈萨克斯坦的已知工业铀矿床可分为二种基本系列:—为前中生代建造中的内生矿床;二为中生代和新生代建造中的外生矿床。并可划分为北哈萨克斯坦(Kokchetav)和(Kendyktas-Chu-Iy-Betpak D ALA(滨巴尔喀什)内生矿床铀矿省;楚—萨雷苏、锡尔河、伊犁、滨里海外生矿床铀矿省。
1.内生系列矿产
内生系列矿床分布广泛,由两种截然不同亚类的脉—网状脉矿床组成。一类与褶皱杂岩的形成有关,另一类产于陆相火山成因的杂岩内。
1)元古宙和中生代杂岩内的脉—网脉状矿床
主要分布在北哈萨克斯坦(约26个铀矿床),主要产于志留纪—泥盆纪页岩、长石砂岩、碧玉岩、灰岩和花岗岩等之中,与古生代造山作用和活化期有关。
矿化主要与黄铁绢英岩化和其他碱交代蚀变岩伴生。控制铀矿化的定位因素为断裂构造,主要是众多长期活动断裂的交汇处,矿体呈扁平透镜状或筒状网脉状,绝大多数矿床中,沥青铀矿是主要铀矿物常与铀石一起产出,有的尚含少量铀磷灰石,矿石品位中等。其中大型矿床(Vostok、Manyba、Grachevsk、Zaozernoe、Semizbai)其储量约为20000t,金属铀和相对较小的矿床(Balkashinskoye-Tastykolskoye等)其储量约3000t金属铀。
该区总储量为208000t左右,其中已探明储量为9.92×104t,已探明储量中,铀产品成本低于80美元/kg 的占73%。副产品为钼酸铵和磷肥。有的矿床已采空,Grachevskoe、Zao-Zernoye、Vostok矿床仍在开采中。
2)陆相火山岩杂岩中的脉—网脉状矿床
多产于滨巴尔喀什(Kendyktas-Chuily-Betpak-Dalynskaya)铀矿省内。其最大特征是产于泥盆纪火山岩带中,带内广泛发育酸性喷出岩和火山碎屑岩、破火山口、次火山岩体发育。该区铀矿属脉—网脉状热液类型。在形成的空间和时间上与流纹质火山杂岩密切相关。主要矿床(Botaburum、Kyzylsai、Kurdai、Djidely)相距不远。Kurdai:矿床在花岗岩中,在构造上与火山颈有关。其它矿床直接赋存在火山岩中,矿体受断裂与火山岩相接触面的联合控制。
矿石为铀—钼型,平均品位0.1%~0.3%,在Djidely矿床的某些块段上有富矿石,铀含量在10%以上。
该区铀储量为12×104t,其中探明的为2.19×104t。目前该区采矿作业处于停止状态。
新疆准噶尔白杨河铀铍矿,是与陆相火山岩有关的又一重要类型。发现于20世纪中期,后来又发现了玛门特等铀矿,都分布在塞米斯台南缘推覆带上。矿化围岩为三叠纪酸性火山岩和石英斑岩(238Ma)次火山岩接触带,包括流纹质火山角砾岩(231Ma)、粗面质流纹岩、球粒流纹岩、石英斑岩及熔结凝灰岩等。萤石化强烈,属富氟流纹岩型铍铀矿床。矿体分布于流纹岩火山頚周边接触带内。平均U含量0.0021%~0.14%,Be含量较高,主要铍矿物为羟硅铍石、铀矿物为沥青油矿、硅钙铀矿、钙铀云母等,伴生多种金属元素(王中刚等,1995)。含矿岩体稀土含量较高,与美国犹他州斯波山含铀玻斑岩近似。铍铀矿化过程中轻稀土(La-Eu)剧增而重稀土(Gd-Lu)未增高,说明Be、U矿化是成矿后的热液阶段发生的。
从稀土元素分布形式看,白杨河流纹岩及岩颈相流纹岩和美国犹他州斯波山玻斑岩均与A型花岗岩的稀土分配型式相似,即稀土分布曲线近于水平,具强烈负铕异常,表明富含氟的铍铀流纹岩与A型花岗岩岩浆相似,物质来源较深,具有高硅富碱和氟,贫水等特点。
新疆白杨河富氟铍铀矿床与美国斯波山矿床属同一类型,为陆相火山岩型矿床,是以羟硅铍石为主,在国外以其高BeO含量和巨大储量为特征,是世界铍矿床的主要工业类型之一。控矿因素:①地层控制。美国斯波山铍矿受古近纪—新近纪玻斑岩控制,新疆白杨河铍铀矿受三叠纪酸性火山岩控制。②陆相火山机构控制。③热液蚀变受萤石化、蒙脱石化、蛋白石和玉髓化控制。④断裂构造和火山岩接触带控制。
2.外生系列矿产
外生系列矿床,表现为3 种矿化类型:①有机磷酸盐型(滨里海铀矿省);②区域成矿氧化带的后成铀矿建造(楚—哈雷苏和锡尔河铀矿省);③土壤层状氧化带的后成铀矿建造(伊犁铀矿)。
(1)滨里海(Mangyshlak)铀矿省,位于Mangyshlak半岛上,Aktau城位于矿区中心,滨里海矿冶联合体建厂于此。
该区为相对年轻的地台,其基底为褶皱的二叠纪—三叠纪沉积杂岩组成,盖层为白垩纪—新近纪沉积。主要含矿建造为渐新世—早中新世沉积。铀矿化产于黄铁矿粘土中带有磷酸盐化的鱼骨化石碎屑堆积中。其中铀含量很低(0.03%~0.05%),但鱼骨碎屑很容易用淋洗法分离。铀在精矿中的含量可提高1~2倍,而含磷硬石膏中含量可达30%。除铀和磷以外,碎屑中还含稀土和钪。
其中最大的矿床(Melovoye)储量为4.38×104t,其它矿床(如Tomakskoye、Tasmurunskoye、Taibagarskoye等)的储量均在4000~9000t之间)。这些矿床总共探明储量6.44×104t。
(2)楚—萨雷苏铀矿省,位于楚—萨雷苏中新生代洼地的中部,该洼地形成于中-晚古生代盆地之上。其组成为中-晚古生代准地台陆源沉积物,其上为中-新生代沉积物所覆,含二种构造—建造组合:是地台型白垩纪—古近纪沉积,为主含矿层,并为活化的晚渐新世—新近纪沉积所覆盖。中-新生代盆地盖层为单斜构造,向南西卡拉套山系缓倾,并被—北西向巨大沉积隆起及局部短轴背斜复杂化。
楚—萨雷苏洼地为一自流盆地、晚白垩世和古近纪—始新世为含水杂岩,晚始新世海相粘土岩是区域性的上部不透水储水层。在晚渐新世—新近纪的新构造运动中,自流盆地主要发育了淋滤体制,使含水层中层状氧化带广泛发育。
工业铀矿化在6个含水层(从下土伦阶—中始新统)上与层状氧化带边界有关。晚白垩世和古近纪为湖相—冲积平原相砂岩和砾—砂沉积。古近纪主要为三角洲相和水下三角洲相的粘土—砂岩建造。每一层构成厚50~70m的沉积旋回,各层中夹有连续或断续的粘土不透水层。
平面上,矿床呈卷曲状,延伸长达10~20m以上,少数具不规则或等轴状,矿体长几十米至1~1.5km不等。宽数米至15~20m不等。矿石为低品位(0.02%~0.05%),但有的也可达0.1%-0.3%,少数还可达百分之几。矿化深达800~1000m至400~00m,以单金属为主,伴生铼、偶尔有硒。
铀石和沥青铀矿呈细分散状发育在石英砂岩和长石石英砂岩的多孔隙粘土—粉砂充填物中。适于地浸法开采。
其中主要工业矿床是古近纪沉积中的Uvanas、Kanzhugan、Moinkum矿床;白垩纪沉积中的Mynkuduk 和 Zhalpak 矿床。已勘探的最大矿床是Mynkuduk(12.7×104t)、Moinkum(8.25×104t)、Kanzhugan(5×104t)、Uvanas(2×104t)。有的正由Steppnoye和Central矿产公司开采。该铀矿省资源总量为50×104t,已探明22.1×104t。
(3)锡尔河铀矿省,位于复杂的锡尔河盆地内,主要由白垩纪、古近纪和新近纪地层构成,宽约2.5~30km,铀矿产于盆地东部和东南部。含矿岩系由白垩纪和古近纪地层组成。铀矿与锡尔河平原自流盆地有关。盆地内水总体流向西北即咸海方向,盆地东北、东南和西南为晚期造山隆起所围,并为内部的隆起—凹陷所复杂化。
中白垩世—古近纪地层被不透水的岩块切割为若干含水杂岩体。控制铀矿化的是晚白垩世和始新世含水层中的层状氧化带区域氧化—还原界面,它是楚—萨雷苏矿区相应层位中氧化界面向南的延伸。控矿的区域层状氧化作用发育最广的是土伦阶(K1-2)上部、孔尼阿克阶(K2)、桑托阶(K2)和坎潘阶(K2)沉积,洼地西南部的陆相粘土—砾石—砂岩建造是一套高渗透性的碎屑沉积,十分有利于层状氧化作用发育。区内发现了北Karamurun、南Karamurum、Irkol、Zarechnoye矿床及其他工作程度较低的铀矿产地。
工业价值最大矿床集中在锡尔河下游的Karamurum矿田内。矿床产于砂岩和砾石—砂质沉积物中,中间夹有明显的不渗透层。矿体长750~5500m、宽25~50m至300~650m。平面上呈卷曲状的条带状,不同形态矿体的成分很复杂,铀含量由万分之几至百分之几,平均含量为0.05%~0.07%,矿体宽度6~24m。延伸300~700m,一般为铀—硒综合矿石、铀矿物为沥青铀矿和铀石、硒呈针状自然硒吸附或聚集在氢氧化铁中。
在已勘探矿床中,工业价值最大的是下列矿床:Irkol(3.7×104t),北Karamurun(2.8×104t)、Zarechnoye(2.5×104t)。本区总资源量为14.3×104t。
(4)伊犁铀矿省,位于哈萨克斯坦东南部,地跨伊犁和巴尔喀什两盆地,形成于中-新生代发展阶段。伊犁盆地东南和巴尔喀什盆地西北发育早-中侏罗世陆相含煤层。轴部深达1500m或更深,并与我国领土毗邻。在其西南发现Koldjat铀—煤矿床。含煤沉积中的铀矿化和伴生的钼矿化形成于该区气候干旱化和构造活化期间,在含氧地下水和层间水的还原障附近。铀矿化在煤层和砂—砾沉积围岩中均有发育。工业钼矿化发育在煤层中铀矿体范围内。铀含量变化很大,从0.05%到1.0%~1.5%,以沥青铀矿为主,少量铀石和氧化沥青铀矿,钼主要为辉钼矿、蓝钼矿和胶硫钼矿。Koldjatskoye 矿床铀储量3.7×104t(尚未开采)。
巴尔喀什盆地中的Nizhne-Ilysky铀—煤矿床的中—新生代陆源沉积岩宽400~500m,构成一个被埋藏的地堑构造,长达100km,宽15~20km。矿化产在煤层盖层内的超覆的渗透性砂岩和粗砂岩边缘,定位于地下水层间氧化带发育处。矿床呈简单层状,面积0.1~3.2km2。铀含量0.05%至1.0%~2.0%之间,以铀石、沥青铀矿为主,钼与铀矿化密切相关。铀储量为6×104t。
伊犁铀矿省除主要的铀—煤型矿床外,还发现了砂岩型层状淋积铀矿床(Suluchkinskoye、Kalkanskoye和Aktau)。这些矿床铀矿化与坎潘期(K2)—古近纪的砂岩层有关,受层间氧化带尖灭的边界所控制,其中以 Suluchekinskoy 矿床最大,储量3.3×104t。
伊犁铀矿省,探明铀总储量为9.2×104t,附加储量为3.7×104t,是哈萨克斯坦共和国一个大的放射性燃料基地。
蒙古国的铀矿多与煤矿有关。印度的铀矿主要有三种类型,产于前寒武系破碎带中的铀矿(最大的贾杜古达矿床),砂岩型矿床(多米亚萨特大型矿床),近来又发现了不整合型铀矿(图6-2)。

图6-2 中亚世界金属矿产及地区性代表矿产分布略图

1-Ar-Pt1基底;2-Ar-Pt1基底上的盖层;3-Pt2末期固结基底(罗丁尼亚古陆);4-Pt2末期固结基底上的盖层;5-萨拉依尔(Z )期固结陆壳;6-萨拉依尔固结基底上的盖层;7-加里东期固结陆壳;8-加里东期基底上的盖层;9-华力西早期(DC1)固结陆壳;10-华力西早期陆壳基底上的盖层;11-华力西晚期(P)固结陆壳;12-印支期(TJ)固结陆壳;13-印支期(TJ)固结基底上的盖层;14-燕山期(J)固结陆壳;15-燕山期(J)固结基底的上叠沉积(K);16-喜马拉雅期(EN)固结陆壳;17-第四纪盖层,第四纪玄武岩;18-岛弧;19-叠加岛弧;20-残余洋盆(1-早古生代,2-晚古生代);21-陆缘火山岩带(DC);22-晚古生代上叠盆地;23-弧后,弧间,弧前盆地;24-裂陷槽;25-裂谷;26-华力西期以来形成的陆内盆地;27-印支期以来形成的陆内盆地;28-燕山期以来形成的陆内盆地;29-喜马拉雅期以来形成的陆内盆地;30-蛇绿混杂岩;31-岩浆岩凝型铬铁矿32-造山带型金矿(黑色岩系)33-斑岩型34-陆相火山岩型35-海相火山岩型(VHMS)36-火山喷发。沉积型(SEDEX)37-与花岗岩类有关的网脉、脉状(高温热液)矿床38-接触交代(矽卡岩)型矿床39-岩浆熔离型矿床40-岩浆气成.热液型(伟晶岩型)矿床41-层控碎屑岩容矿42-层控碳酸盐岩容矿43-层控一热液型滑石菱镁片岩型(琼科伊)似碧玉岩型(海达尔坎)44-沉积一变质型(天湖型)45-层控碳酸盐岩容矿一热液改造型(彩霞山型)46-韧性剪切带型(康古尔塔格型)47-碱性、碱性伟晶岩有关的矿产48-榴辉岩型金刚石矿床

表6-1 矿床一览表


续表

本成矿带包括伊犁盆地、乌孙山地区,出露最老地层为长城系、蓟县系、青白口系,其岩性为浅变质的碎屑岩、大理岩。泥盆系缺失,石炭系火山岩和碎屑岩直接不整合于中、新元古界之上。中元古代侵入岩为二长-钾长花岗岩,海西中期为闪长岩-花岗岩、花岗闪长岩-花岗岩,晚期为花岗岩,属造山后产物。

图1-20 尼勒克县阿吾勒拉山一带遥感解译图

该区广泛分布第四纪砂金矿,同时也是含煤、油气和铀矿产的沉积盆地。铀矿与含铀砂岩关系密切,属砂岩型铀矿化类型,主要矿床有达拉地、蒙其古尔、扎克斯台和库提尔特铀矿。伊犁盆地煤总储量为4837亿t,已有伊宁煤田、昭苏煤田、尼勒克煤田。在乌孙山发现众多铜、铅、锌、金等矿点外,还有火山沉积型铜矿(库姆小型矿床)、昭苏北部的二叠系中有含铜砂岩。
伊犁盆地在TM图片上显示阶梯梯状断陷盆地特征,南侧以乌孙山北缘断裂为界,其山前广泛发育洪积扇和冲积扇。伊犁河谷两侧边缘线性构造明显,受隐伏断裂控制。伊犁盆地北侧以博罗科洛山前断裂为界。根据张国伟等(1999)研究,伊犁盆地两侧阶梯状断层皆为向盆地逆冲的冲断层性质,因此,伊犁盆地属于压性断陷盆地。

新疆蒙其古尔特大型铀矿床
答:蒙其古尔特大型铀矿床位于新疆察布查尔县境内,是继库捷尔太、扎吉斯坦和乌库尔其铀矿床后在伊犁盆地南缘落实的第四个可地浸砂岩型铀矿床。 1 发现和勘查过程 蒙其古尔铀矿床最早发现于20世纪50年代中后期,60年代至90年代勘查停滞。2000年至2013年,核工业二一六大队在蒙其古尔地区开展了系统的铀矿找矿勘查,先后有大调...

新疆洪海沟铀矿床
答:[摘要]洪海沟铀矿床是继库捷尔太、扎吉斯坦、乌库尔其和蒙其古尔铀矿床后核工业二一六大队在伊犁盆地南缘发现的第五个砂岩型铀矿床,是“十二五”期间在伊犁盆地南缘的重要找矿勘查成果。中侏罗统西山窑组上段为主要赋矿层,中侏罗统头屯河组找矿工作取得较大进展,第十二煤层铀资源量达大型。为伊犁盆地南缘下一步找...

新疆扎吉斯坦铀矿床
答:扎吉斯坦铀矿床位于伊犁盆地南缘中西段,往北西距乌库尔其矿床4km,东南和蒙其古尔矿床相连,是继库捷尔太铀矿床后在伊犁盆地南缘发现的第二个可地浸砂岩型铀矿床,和蒙其古尔矿床、乌库尔其矿床一起构成伊犁盆地南缘铀矿田东部成矿集中区。行政区划隶属察布查尔锡伯自治县管辖,距县城35km,矿区内交通便利。 1 发现和勘...

伊犁盆地煤铀金铜铅锌成矿带
答:铀矿与含铀砂岩关系密切,属砂岩型铀矿化类型,主要矿床有达拉地、蒙其古尔、扎克斯台和库提尔特铀矿。伊犁盆地煤总储量为4837亿t,已有伊宁煤田、昭苏煤田、尼勒克煤田。在乌孙山发现众多铜、铅、锌、金等矿点外,还有火山沉积型铜矿(库姆小型矿床)、昭苏北部的二叠系中有含铜砂岩。伊犁盆地在TM图片上...

其他非金属矿床及能源矿床
答:新疆白杨河富氟铍铀矿床与美国斯波山矿床属同一类型,为陆相火山岩型矿床,是以羟硅铍石为主,在国外以其高BeO含量和巨大储量为特征,是世界铍矿床的主要工业类型之一。控矿因素:①地层控制。美国斯波山铍矿受古近纪—新近纪玻斑岩控制,新疆白杨河铍铀矿受三叠纪酸性火山岩控制。②陆相火山机构控制。③热液蚀变受萤...