矿物识别方法和工作流程 任务明确肉眼矿物鉴定的方法和步骤

作者&投稿:爱悦 (若有异议请与网页底部的电邮联系)
目前,矿物识别制图的方法是特征谱带识别和基于相似性测度的识别:①利用岩石矿物的特征谱带构造识别技术,该方法相对直观,简单可行,但是单一的特征往往造成岩石矿物的错误识别,其精度难以达到工程化应用的需求,同时对成像光谱数据的信噪比、光谱重建的精度要求较高;②从岩石矿物光谱的整体特征出发,与成像光谱视反射率数据进行整体匹配、拟合或构造模型进行分解,这也是目前研究的重点,能有效地避免因岩石矿物光谱漂移或光谱变异而造成的单个光谱特征的不匹配,并能综合利用弱的光谱信息,避免局部性特征(如单一特征构建的识别方法)造成识别的混淆,识别的精度高。
对于成像光谱上百个波段而言,数据量非常之大,尤其在目前无论是航空成像光谱数据,如AVIRIS、CASI、HyMap等,还是在轨的航天成像光谱数据,如Hyperion航带都普遍比较窄,一般在3~10km,给大面积应用带来很多不便,增加了大面积数据处理的难度,并使工作量在目前微机配置的条件下成倍增加。因此,无论是从岩石矿物光谱的局域特征还是整体特征开展对矿物的识别,在保证识别精度要求的条件下进行工程化的处理,必须探索新的技术流程。
在对成像光谱数据特征与识别方法的比较研究中,结合工作实际以及进行工程化处理的初步要求,在确保识别精度的条件下,设计出标准数据库光谱+光谱-特征域转换+矿物识别方法的技术流程。该流程的主要作用:
(1)直接开展蚀变矿物的识别与信息提取:在对试验区岩石类型、构造、热液活动以及矿产综合研究的基础之上,提炼与矿化关系密切的蚀变矿物,利用标准库的光谱或野外实测光谱作为参考光谱。
(2)进行光谱域与特征域的转换,实现数据减维与数据压缩,降低工作量,提高工作效率:成像光谱数据波段上百,不同的航带宽度与记录长度使单次处理的数据量达1Gbytes,中间过渡文件单航带可达10Gbytes;在以前的处理中常常将航带分割成较小的区域进行处理后再进行拼接,利用MNF技术可以将整个光谱域空间转换到特征域空间,消除原有光谱向量间各分量之间的相关性,从而去掉信息量较少噪声较高的向量,使数据处理从成百的光谱域集中到去噪的特征域中进行,减低数据量,缩短数据处理时间,提高数据处理的效率。
(3)特征分离,增加不同矿物的可分性,提高矿物识别的精度:在成像光谱数据MNF变换并剔除噪声波段的特征域空间中,不同的波段被赋予了不同的物理或数学意义,地物的光谱特征在特征域发生分离,地物的细微特征得到放大,增加了数据的可分性。
4.4.2.1 光谱特征域转换
光谱分辨率的提高,一方面提高了数据的分类识别的精度以及应用能力,另一方面,增加了数据的容量,也使数据高冗余高相关。有效的数据压缩与特征提取势在必行。一般地,利用传统的主成分变换进行相应的变化,衍生出一系列的成像光谱数据压缩与特征提取方法,如MNF变换(Kruse,1996;Green et al.,1998),NAPC(Lee et al.,1990)、分块主成分变换(Jia et al.,1998)以及基于主成分的对应分析(Carr et al.,1999)等。空间自相关特征提取(Warner et al.,1997)、子空间投影(Harsanyi et al.,1994)和高维数据二阶特征分析(Lee et al.,1993;Haertel et al.,1999)也得到相应的重视。利用非线形的小波、分形特征(Qiu et al.,1999)也在研究之中。
主成分分析(PCA)是根据图像的统计特征确定变换矩阵对多维(多波段)图像进行正交线性变换,使变换后新的组分图像互不相关,并且把多个波段中有用信息尽可能地集中到少数几个组分图像中(图4-4-1)。一般地,随着主成分阶次的提高,信噪比逐渐减小。但在波段较多时并不完全符合这一规律。
为改善主成分在高光谱维中的数据处理能力,相应地利用最大噪声组分变换(MNF)的方法(甘甫平,2001;甘甫平等,2002~2003)。该方法是利用图像的噪声组分矩阵(ΣNΣ-1)的特征向量对图像进行变换,使按特征值由大到小排序的变换分量所包含的噪声成分逐渐减小,而图像质量顺次提高。Σ为图像的总协方差矩阵,ΣN为图像噪声的协方差矩阵。MNF相当于所有波段噪声方差都相等时的主成分分析,因此可分为两步实现,第一步先将图像变换到一个新的坐标系统,使变换后图像噪声的协方差矩阵为单位阵;第二步再对变换后的图像施行主成分变换。此改进的算法称为“噪声调节主成分变换(NAPC)”。
对P波段的高光谱图像
Zi(x),i=1,2,…,p (4-4-1)
可以假设
Z(x)=S(x)+N(x) (4-4-2)
这里,ZT(x)={Z1(x),…,Zp(x)},S(x)和N(x)分别为Z(x)中不相关的信息分量和噪声分量。因此,
Cov{Z(x)}=∑=∑S+∑N (4-4-3)
∑S和∑N分别为S(x)和N(x)的协方差矩阵。因此,可以定义第i波段噪声分量,
Var{Ni(x)}/Var{Zi(x)} (4-4-@4)
选择线形转换,MNF变换可以表示为
成像光谱岩矿识别方法技术研究和影响因素分析
在变换中,确保
成像光谱岩矿识别方法技术研究和影响因素分析
同时,为使噪声与信息分离,S(x)分别与Z(x)和N(x)正交。
图4-4-1 MNF变换的特征值曲线
MNF有两个重要的性质,一是对图像的任何波段作比例扩展,变换结果不变;二是变换使图像矢量、信息分量和加性噪声分量互相垂直。乘性噪声可通过对数变换转换为加性噪声。变换后可针对性地对各分量图像进行去噪,或舍弃噪声占优势的分量。MNF变换的特征值曲线如图4-4-1。
4.4.2.2 特征分离
在MNF变换后的特征域中不同波段具有不同物理与数学意义。比如变换后的第1波段表示地物的亮度信息,第7 波段或第8 波段表示地形信息。在MNF变换中,通过信号与噪声分离,使信息更加集中于有限的特征集中,一些微弱信息则在去噪转化中被增强。同时在MNF转换过程中,使光谱特征向量集汇聚,增强分类信息。
图4-4-2是一些矿物光谱通过MNF变换前后的曲线剖面图,从右图可见信息与噪声分别有序地集中在一些有限的波段内。通过舍弃噪声波段或其他处理,相应地降低或消除噪声的影响。同时信息也比原始数据更易区分。
4.4.2.3 矿物识别
矿物识别主要选用光谱相似性测度的方法。基于整个谱形特征的相似性概率的大小,能有效地避免因岩石矿物光谱漂移或光谱变异而造成的单个光谱特征的不匹配,并能综合利用弱的光谱信息。
图4-4-2 矿物光谱MNF变换前后特征比较
基于整个光谱形特征的识别方法主要有光谱角技术、光谱匹配滤波、光谱拟合与线形分解等。利用大气校正后的重建光谱数据,可选择性地利用上述矿物识别技术开展端元矿物的识别。光谱角方法可直接选择端元矿物进行匹配,最终生成二值图像,简单易行,在阈值合理可靠的前提下能够获取较高的识别精度。
在成像光谱岩矿地质信息识别与提取方法中,光谱角技术是一种较好的方法之一(王志刚,1993;刘庆生,1999)。光谱角识别方法是在由光谱组成的多维光谱矢量空间,利用一个岩矿矢量的角度测度函数(θ)求解岩矿参考光谱端元矢量(r)与图像像元光谱矢量(t)的相似性测度,即:
成像光谱岩矿识别方法技术研究和影响因素分析
这里,‖*‖为光谱向量的模。参考端元光谱可来自实验室、野外测量或已知类别的图像像元光谱。θ介于0到π/2,其值愈小,二者相似度愈高,识别与提取的信息愈可靠。通过合理的阈值选择,获取矿化蚀变信息的二值图像。
4.4.2.4 阈值的选择与航带间信息的衔接
无论是光谱角技术还是光谱匹配以及混合光谱分解,都存在对非矿物信息的分割,因此阈值的选择是一个必须面临的重要问题。这不仅关系到所识别矿物的可靠度,也关系到矿物分布范围大小的界定。同时由于是分航带提取,不同航带间因大气校正的误差和噪声的影响而使同一地物的光谱特征存在差异,可能使所提取的矿物空间展布特征在航带之间所有诊断和一致性,增加了制图的困难。因此对于阈值的选择,需遵循以下原则:在去除明显假象信息、保留可靠的矿化蚀变信息情况下考虑整体的一致性以及航带的过渡性。
4.4.2.5 技术流程
结合成像光谱数据预处理,根据实际应用情况,可以总结出成像光谱遥感地质调查工作的技术流程,如图443所示。
编辑于 2020-01-19
TA的回答是否帮助到你了?
能够帮助到你是知道答主们最快乐的事啦!
有帮助,为TA点赞
无帮助,看其他答案
金融与管理优选「时代华商」金融投资班
值得一看的金融与管理相关信息推荐
解决企业资本发展,实现金融投资与商业模式创新金融与管理选时代华商金融与管理助你企业实现产品与金融与管理的双引擎发展,为企业插上资本的翅膀!
本月126人已拨打电话咨询问题
咨询
广州时代华商人才培训股份有限...广告
浙江荣阳工程评估咨询有限公司,安全风险评估
值得一看的风险评估相关信息推荐
荣阳咨询安全风险评估建立了一套完善的咨询体系,从现状评估,解决方案,研发设计
ideal-link.cn广告
矿物识别方法和工作流程
专家1对1在线解答问题
5分钟内响应 | 万名专业答主
马上提问
garlic 正在咨询一个职场问题
— 你看完啦,以下内容更有趣 —
FRM认证相当于硕士学位
获得FRM认证,加入全球风险管理精英社群。千里之行始于足下,登录了解认证详情。
广告2021-04-19
任务了解矿物鉴定的工作过程
一、矿物样品的采集 样品采集是矿物鉴定的基础工作,是为了获得工作对象。采集样品时应注意其代表性、典型性及目的性。样品的采集要根据其分布情况及均匀程度选取适当的大小规格,以便研究矿物的宏观及微观特征、结构构造特点以及共生、变化关系,并注意颗粒大小及嵌布关系等特征。此外,还需要采集用于测定化学成分、内部结构、形态及物理性质等方面的样品。根据对矿物研究的目的性及矿物在岩石或矿石中的分布状况决定采集样品的数量。对于晶形完善或晶面复杂的矿物晶体,在采集时必须小心谨慎,切勿随意损坏。 二、矿物的分选方法 在对某种矿物进行成分、结构或物性研究时,常常需要把这种单矿物从集合体中挑选出来。试样的纯净与否,是决定研究结果是否正确的关键,而从矿物集合体中选取极为纯净的单一矿物是非常复杂的工作,往往因为分选对象的不同而采用不同的方法。 在分选之前,常常必须进行“碎样”。也就是将矿物集合体进行破碎,以便使所需的矿物与其他矿物分开。数量多时可采用破碎机破碎,数量不多也可用铁钵人工破碎。破碎粒度主要视矿物单体的粒度而定,一般情况下需要粉碎至0.2~0.4mm之间。在粉碎的同时,必须用适当的筛网过筛,以便进行粒度分级并防止“过粉碎”。在通常情况下,过筛后0.2mm以上的样品需达1千克或更多些,以便保证从中提取足够数量的单矿物。 样品破碎后,接着就是把所需矿物从碎样中分选出来。如需要的试样数量不多,则可在双目镜下用针逐粒挑选;如需要的试样数量比较多,并且手选困难又费时,则可用其他仪器进行分选。主要方法有下列几种: 重力分选 根据矿物密度的不同,可以采用淘洗和重液分离 (有时需用离心机分离); 磁力分选 根据矿物的磁性强弱不同,利用磁铁、电磁铁进行分选; 浮游分选 根据矿物对浮油剂的不同吸附性进行分选; 介电分选 根据矿物的介电常数 (ε)不同来分离矿物,例如黑钨矿 (ε=15)、铌钽铁矿 (ε=20)、方解石 (ε=6.3)、无色透明石英 (ε=4.5)等分选效果良好; 形态分选 根据矿物的形态不同 (如呈片状、柱状或粒状)来分离矿物。 矿物分选工作,尽管目前已经有许多方法,但仍不能解决矿物分选的全部问题。特别对细小矿物及高密度矿物的分选尚属困难。 近年来,电磁重液分选、高频介电分选、超声波浮选、重力分选 (矿泥摇床)和重液变温分选等方法得到推广使用。其中电磁重液分选法可将非磁性矿物按密度进行分离,它甚至可使密度大的金和铂分开;高频介电分选目前只限于对数十种矿物的分离,要求矿物最小粒度大于15~20μm;重力分选仪所分离的矿物最细可达10μm;超声波浮选主要是利用超声波产生空蚀现象使细小矿物崩解,同时利用适当捕集剂,以产生浮游分选矿物的目的;重液变温分选主要用于分离某些物理性质较相近或同一种矿物之不同世代个体的分选上。 经上述种种方法分选出的单矿物样品,为了保证其纯净度,最后必须经过双目镜下的检查和挑纯。 三、矿物的肉眼鉴定 矿物的肉眼鉴定是借助肉眼和放大镜、体视显微镜以及一些简单的工具 (如小刀、磁铁、条痕板等)对矿物的外表特征 (如晶形、颜色、光泽、条痕、透明度、解理、硬度、密度等)进行观察,从而鉴定矿物的简便方法。一个具有鉴定经验的人,利用肉眼鉴定方法,就能正确地把上百种常见矿物初步鉴定出来。肉眼鉴定法对于结晶粗大,并具显著特征的矿物,效果较好。 肉眼鉴定看起来简单,但要达到快速准确,需要经过一定的训练。特别是对细粒矿物的晶形、解理的观察,需要反复实践和对比,积累经验,才能熟练掌握。肉眼鉴定矿物有一定的局限性,某些特征相似的矿物,或者是颗粒很细小的矿物和胶态矿物,往往难以鉴别,必须采用其他方法。但是肉眼鉴定仍然是进一步鉴定和研究的基础。因为通过肉眼鉴定,可以初步估计出矿物的种或族,由此决定选用什么方法进行精确的鉴定和研究。因此,肉眼鉴定矿物是一个地质工作者必须熟练掌握的基本技能。 四、仪器鉴定 用肉眼鉴定仍然确定不了的矿物,就需要借助一定的仪器设备进行鉴定。借助仪器对矿物进行鉴定的方法很多,应根据研究目的,按照有效、准确和快速的原则进行选择。 借助仪器鉴定矿物的方法包括: 1)检测矿物化学成分的方法:简易化学试验、光谱分析、原子吸收光谱分析、激光光谱分析、X射线荧光光谱分析、极谱分析、化学分析和电子探针分析; 2)通过测定矿物某种物性或晶体结构数据从而可定出矿物种属的方法:密度测定、热分析、显微镜观察、电子显微镜观察、X射线分析、红外光谱分析、穆斯堡尔效应; 3)研究矿物形貌的方法:测角法、电子显微镜观察; 4)其他专门方法:包裹体研究、稳定同位素研究等。
9浏览2020-01-16
面对一种不知名的矿物你从哪些方面进行观察,用什么方法研究
肉眼鉴定矿物主要是根据矿物的颜色、光泽、条痕、解理、硬度的特点来进行鉴定工作。那么肉眼鉴定矿物所需的简易工具有:瓷板(用来刻划条痕)、小刀(用来刻硬度)、放大镜(用来看解理特点等)。有时还可以随身带一小瓶盐酸、小磁铁。 肉眼鉴定矿物所需的简易工具:小刀、放大镜、磁铁、瓷板。 绝大多数矿石是多种矿物紧密连生的混合物,在手标本上鉴别较困难,往往不可能全部识别清楚。因此,矿石中矿物的鉴定、矿物粒度测定、矿物解离度测定、矿石结构分析以及选矿产物的矿物学分析等工作常用显微镜来完成。 在选矿过程中大部分脉石矿物在可见光中透明,而大多数重要的金属矿物经常是不透明的。在鉴定和研究透明矿物工作中,应用最广泛且成熟而有效的方法就是根据透明矿物晶体光学原理,利用偏光显微镜进行研究。这种研究法是将矿石或岩石磨成0.03mm厚的薄片,在镜下观察可见光通过晶体时所发生的折射和干涉现象,测定矿物晶体的光性常数,如晶形、颜色、解理、突起、干涉色、双折射率、消光类型和消光角、延长符号、双晶、轴性、光性正负、光轴角等,并有成套完整的光性数据可供查阅,从而达到鉴定矿物,研究矿石的结构和构造等目的。 在鉴定和研究不透明金属矿物时,应用最多的是反光显微镜又称矿石显微镜或矿相显微镜,其类型较多,各有特点,新型显微镜不仅可偏、反两用,并附有许多供定量测定使用的附件。反光显微镜的主体结构和基本原理与偏光显微镜相同,但前者带有一个垂直照明器。 用反光显微镜鉴定矿物,要将矿石磨制成光片,置于镜下,光源通过照明器内的反射器,将光线向下反射到矿石光片表面上,再从光片表面向上反射到目镜,即可观察和鉴定不透明矿物的光学性质。如观察晶体的形态和结晶习性、解理和裂理、双晶、环带构造、连晶、粉末颜色、硬度、塑性、颜色及多色散、反射率、双反射效应、均质性和非均质性、偏光色、内反射、旋转性质以及对标准浸蚀试剂的反应和各种元素的显微化学试验等。
27赞·746浏览2017-09-01
如何利用矿物鉴定矿物?
物理方法:用矿物的一些物理性质来区分矿物,这是最简单实用的方法,是我们在野外鉴定的主要方法,这些物理性质主要有:1)形状:片状、肾状、鲕状、菱形、立方状、板状、致密状、短柱状等。2)颜色 矿物的颜色是最容易引起注意的。分为三种:自色—矿物本身所固有的颜色。它色—矿物中混入杂质,带色的气泡所导致的颜色。假色—由矿物表面氧化膜、光线干涉等作用引起的颜色。3)条痕:矿物粉末的颜色。将矿物在白瓷板上刻划后留下粉末的颜色。它可以消除假色,减弱他色,保存自色,但矿物硬度一定要小于白瓷板。具体简单的物理方法区别,准备2个道具,第一是一把小刀,第二是一块白色瓷砖。石英:玻璃光泽 透明,解理较好,硬度比小刀大,小刀划不出明显的痕迹出来长石:玻璃光泽 比石英硬度稍小 比较常见,主要是钠长石和钾长石滑石:白色,半透明,硬度很低,可以用指甲画出痕迹出来,放在舌头上还有种粘的感觉。萤石:具很强荧光,用小刀可以刻出明显痕迹。长石分两大类——正长石(钾长石)和斜长石,二者区别在于两组解理的夹角,正长石等于90度,斜长石小于90度 一般颜色多样,有些正长石显肉红色,是由于含有铁的原因黄铁矿:浅黄铜黄色,表面常具黄褐色锖色。放在白色瓷砖上划出的条痕绿黑或褐黑。强金属光泽菱铁矿:一般为晶体粒状或不显出晶体的致密块状、球状、凝胶状。颜色一般为灰白或黄白黄铜矿:很容易和金矿混淆。从它的颜色和条痕当中鉴别出来,它和黄铁矿相像,但是硬度不如黄铁矿。鉴定时,指甲刻不出明显痕迹,但如果是金矿的话,指甲可以划出痕迹。 参考资料: 地质学基础
443浏览2019-11-08
矿物标本资源整理技术规程
前言 为提高矿物标本的可用性,特制定《矿物标本资源整理技术规程》,用以规范化国家科技基础条件平台标本资源的整理工作,使标本整理同标本的科学研究紧密结合起来。 本规程对矿物标本的整理提出了从去包装、清理、观察、研究、鉴定、定名到资料整理过程的共14项内容,对各项内容的工作方法作了简要说明,内容较全面并具有较强的实用性。 本规程附录A—附录C为规范性附录,附录D为资料性附录。 本规程由国家自然科技资源共享平台提出。 本规程起草单位:中国地质大学(北京)。 本规程起草人:何明跃。 本规程由国家岩矿化石标本资源共享平台负责解释。 1 范围 本规程规定了矿物标本整理的内容、步骤和方法。 本规程适用于自然科技资源平台建设矿物标本资源的整理。 2 规范性引用文件 下列文件中的条款,通过本规程的引用而成为本规程的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版不适用于本规程,然而,鼓励根据本规程达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规程。 GB/T9649.9—2009 地质矿产术语分类代码 第9部分:结晶学及矿物学 GB/T17366—1998 矿物岩石的电子探针分析试样的制备方法 北京分析仪器厂,北京师范大学物理系.核磁共振波谱仪及其应用.北京:科学出版社,1974 陈允魁.红外吸收光谱法及其应用.上海:上海交通大学出版社,1993 迪安JA.分析化学手册.北京:科学出版社,2002 李哲,应育浦.矿物穆斯堡尔谱学.北京:科学出版社,1996 潘兆橹.结晶学及矿物学.北京:地质出版社,1993 (苏联)索洛多夫尼柯娃著,邓常思译.矿物鉴定指南及鉴定表.北京:地质出版社,1957 王嘉荫.普通矿物鉴定.北京:商务印书馆,1952 王濮,潘兆橹,翁玲宝等.系统矿物学.北京:地质出版社,1982 谢广元.选矿学.徐州:中国矿业大学出版社,2001 袁耀庭.野外矿物鉴定手册.北京:煤炭工业出版社,1958 曾广策.简明光性矿物学.武汉:中国地质大学出版社,1989 张国栋.材料研究与测试方法.北京:冶金工业出版社,2001 中国科学院地质研究所编.薄片内透明矿物鉴定指南.北京:科学出版社,1970 Criddle A J,Stanley C J.Quantitative data file for ore minerals,3rd ed.Chapman ﹠ Hall, London,1983 Dunn P J,Mandarino J A.Formal definitions of type mineral specimens.Mineralogy and Petrology,1998,38,(1),77~79 Ernest H Nickel,Joel D Grice.国际矿物学协会新矿物及矿物命名委员会关于矿物命名的程序和原则.岩石矿物学杂志,1999,18(3):273~285 Joseph A Mandarino.矿物标本类型(形式)的正式定义.岩石矿物学杂志,1987,6(4):372~373 3 术语和定义 下列术语和定义适用于本规程: a.矿物(mineral):主要是由地壳及其邻层中化学元素通过地质作用形成的(也包括宇宙中形成的)天然单质或化合物。它们具有一定的化学组成和内部结构,在一定的物理化学条件范围内稳定,是组成岩石和矿石的基本单元。 b.矿物标本的整理(mineral specimen neaten):是矿物标本收集(主要是采集)后,为了进一步对标本进行科学研究的准备工作。根据矿物标本资源描述标准将矿物标本分为标本、薄片、光片、模型(模具)及其他。 c.新矿物的矿物标本(type mineral specimen):用以确定矿物种的考证样品。新矿物的标本称为标准标本。可根据所提供测试数据的情况分为以下三种: ——全型标本(holotype):由作者提出的单一标本,该标本能取得所有原始描述中的数据。 ——附型标本(cotype):由作者确定的,可以取得原始描述中的定量级数据的那些标本。附型标本只是用以提供定量数据,而不是所有必须的数据。 ——补型标本(neotype):当全型及附型标本遗失后,虽经一切办法找原标本仍无结果时,修订者或重新研究者所选定的标本,用以代表失落的标本,即使该标本经过实验研究与原有全型与附型标本化学式及晶胞常数有微细差别,但只要确定属于同种,也可作为补型标本。所有补型标本须经国际矿物学协会新矿物及矿物命名委员会(CNMMN)、国际矿物学会(IMA)批准。 4 矿物标本的整理 4.1 概念 对获得的矿物标本进行整理的工作包括标本的清理、修复、编号、登记、建档以及与该标本有关的图像、资料的收集归档工作。 4.2 整理工具 手套、刷子、小錾子、尖针、小铁锤、小号水枪、放大镜、摩氏硬度计、未上釉的瓷板、磁针、小刀、黏结剂、记录本、记录笔、编目卡片。 4.3 标本编号的工具 油漆、油漆刷、胶布、编号笔。 4.4 标本盛放的材料 ——软纸、海绵和棉花:包装材料,避免矿物原始晶体受到损坏,亦可作为细小完整晶体的包装用。 ——标本盒:盛放矿物标本。 ——玻璃瓶:主要用于存放易潮解、易氧化的矿物标本及较小的矿物标本。 4.5 工作环境的要求 整理标本的场地要有足够的空间、相应的工作台,可以将标本展开摆放,同时整理室还要有良好的通风和采光设备。 4.6 整理的内容与方法 4.6.1 去包装 拆除包装箱,顺序拿出每件标本,对照装箱登记单,核对每件标本包装上的编号及野外记录号,按序排放。 4.6.2 清理标本 用细软的刷子清除标本表面的灰尘、泥土等附着物(可利用小錾子、尖针等剔除)。再把标本清洗干净,将原始标签一同放入托盘内。 4.6.3 标本观察与研究 利用肉眼(可借用放大镜、双目镜)观察和研究矿物的形态、表面物性特征,共生及伴生矿物之间的时空分布特点。选定切光(薄)片的部位以及测试方法。若所选测试方法是对单矿物进行分析,则需要选单矿物,单矿物样品纯度越高越好,步骤包括破碎和分选,后者可分为手选、重选、浮选、磁选及电选等。 4.6.4 标本鉴定和研究 将一个矿物标本正确无误定名,鉴定工作需要运用各种矿物鉴定方法并结合野外定名或原始资料,与已知矿物查对,正确定名。对未知矿物提出进一步鉴定方案。鉴定报告需

目前,矿物识别制图的方法是特征谱带识别和基于相似性测度的识别:①利用岩石矿物的特征谱带构造识别技术,该方法相对直观,简单可行,但是单一的特征往往造成岩石矿物的错误识别,其精度难以达到工程化应用的需求,同时对成像光谱数据的信噪比、光谱重建的精度要求较高;②从岩石矿物光谱的整体特征出发,与成像光谱视反射率数据进行整体匹配、拟合或构造模型进行分解,这也是目前研究的重点,能有效地避免因岩石矿物光谱漂移或光谱变异而造成的单个光谱特征的不匹配,并能综合利用弱的光谱信息,避免局部性特征(如单一特征构建的识别方法)造成识别的混淆,识别的精度高。

对于成像光谱上百个波段而言,数据量非常之大,尤其在目前无论是航空成像光谱数据,如AVIRIS、CASI、HyMap等,还是在轨的航天成像光谱数据,如Hyperion航带都普遍比较窄,一般在3~10km,给大面积应用带来很多不便,增加了大面积数据处理的难度,并使工作量在目前微机配置的条件下成倍增加。因此,无论是从岩石矿物光谱的局域特征还是整体特征开展对矿物的识别,在保证识别精度要求的条件下进行工程化的处理,必须探索新的技术流程。

在对成像光谱数据特征与识别方法的比较研究中,结合工作实际以及进行工程化处理的初步要求,在确保识别精度的条件下,设计出标准数据库光谱+光谱-特征域转换+矿物识别方法的技术流程。该流程的主要作用:

(1)直接开展蚀变矿物的识别与信息提取:在对试验区岩石类型、构造、热液活动以及矿产综合研究的基础之上,提炼与矿化关系密切的蚀变矿物,利用标准库的光谱或野外实测光谱作为参考光谱。

(2)进行光谱域与特征域的转换,实现数据减维与数据压缩,降低工作量,提高工作效率:成像光谱数据波段上百,不同的航带宽度与记录长度使单次处理的数据量达1Gbytes,中间过渡文件单航带可达10Gbytes;在以前的处理中常常将航带分割成较小的区域进行处理后再进行拼接,利用MNF技术可以将整个光谱域空间转换到特征域空间,消除原有光谱向量间各分量之间的相关性,从而去掉信息量较少噪声较高的向量,使数据处理从成百的光谱域集中到去噪的特征域中进行,减低数据量,缩短数据处理时间,提高数据处理的效率。

(3)特征分离,增加不同矿物的可分性,提高矿物识别的精度:在成像光谱数据MNF变换并剔除噪声波段的特征域空间中,不同的波段被赋予了不同的物理或数学意义,地物的光谱特征在特征域发生分离,地物的细微特征得到放大,增加了数据的可分性。

4.4.2.1 光谱特征域转换

光谱分辨率的提高,一方面提高了数据的分类识别的精度以及应用能力,另一方面,增加了数据的容量,也使数据高冗余高相关。有效的数据压缩与特征提取势在必行。一般地,利用传统的主成分变换进行相应的变化,衍生出一系列的成像光谱数据压缩与特征提取方法,如MNF变换(Kruse,1996;Green et al.,1998),NAPC(Lee et al.,1990)、分块主成分变换(Jia et al.,1998)以及基于主成分的对应分析(Carr et al.,1999)等。空间自相关特征提取(Warner et al.,1997)、子空间投影(Harsanyi et al.,1994)和高维数据二阶特征分析(Lee et al.,1993;Haertel et al.,1999)也得到相应的重视。利用非线形的小波、分形特征(Qiu et al.,1999)也在研究之中。

主成分分析(PCA)是根据图像的统计特征确定变换矩阵对多维(多波段)图像进行正交线性变换,使变换后新的组分图像互不相关,并且把多个波段中有用信息尽可能地集中到少数几个组分图像中(图4-4-1)。一般地,随着主成分阶次的提高,信噪比逐渐减小。但在波段较多时并不完全符合这一规律。

为改善主成分在高光谱维中的数据处理能力,相应地利用最大噪声组分变换(MNF)的方法(甘甫平,2001;甘甫平等,2002~2003)。该方法是利用图像的噪声组分矩阵(ΣNΣ-1)的特征向量对图像进行变换,使按特征值由大到小排序的变换分量所包含的噪声成分逐渐减小,而图像质量顺次提高。Σ为图像的总协方差矩阵,ΣN为图像噪声的协方差矩阵。MNF相当于所有波段噪声方差都相等时的主成分分析,因此可分为两步实现,第一步先将图像变换到一个新的坐标系统,使变换后图像噪声的协方差矩阵为单位阵;第二步再对变换后的图像施行主成分变换。此改进的算法称为“噪声调节主成分变换(NAPC)”。

对P波段的高光谱图像

Zi(x),i=1,2,…,p (4-4-1)

可以假设

Z(x)=S(x)+N(x) (4-4-2)

这里,ZT(x)={Z1(x),…,Zp(x)},S(x)和N(x)分别为Z(x)中不相关的信息分量和噪声分量。因此,

Cov{Z(x)}=∑=∑S+∑N (4-4-3)

S和∑N分别为S(x)和N(x)的协方差矩阵。因此,可以定义第i波段噪声分量,

Var{Ni(x)}/Var{Zi(x)} (4-4-@4)

选择线形转换,MNF变换可以表示为

成像光谱岩矿识别方法技术研究和影响因素分析

在变换中,确保

成像光谱岩矿识别方法技术研究和影响因素分析

同时,为使噪声与信息分离,S(x)分别与Z(x)和N(x)正交。

图4-4-1 MNF变换的特征值曲线

MNF有两个重要的性质,一是对图像的任何波段作比例扩展,变换结果不变;二是变换使图像矢量、信息分量和加性噪声分量互相垂直。乘性噪声可通过对数变换转换为加性噪声。变换后可针对性地对各分量图像进行去噪,或舍弃噪声占优势的分量。MNF变换的特征值曲线如图4-4-1。

4.4.2.2 特征分离

在MNF变换后的特征域中不同波段具有不同物理与数学意义。比如变换后的第1波段表示地物的亮度信息,第7 波段或第8 波段表示地形信息。在MNF变换中,通过信号与噪声分离,使信息更加集中于有限的特征集中,一些微弱信息则在去噪转化中被增强。同时在MNF转换过程中,使光谱特征向量集汇聚,增强分类信息。

图4-4-2是一些矿物光谱通过MNF变换前后的曲线剖面图,从右图可见信息与噪声分别有序地集中在一些有限的波段内。通过舍弃噪声波段或其他处理,相应地降低或消除噪声的影响。同时信息也比原始数据更易区分。

4.4.2.3 矿物识别

矿物识别主要选用光谱相似性测度的方法。基于整个谱形特征的相似性概率的大小,能有效地避免因岩石矿物光谱漂移或光谱变异而造成的单个光谱特征的不匹配,并能综合利用弱的光谱信息。

图4-4-2 矿物光谱MNF变换前后特征比较

基于整个光谱形特征的识别方法主要有光谱角技术、光谱匹配滤波、光谱拟合与线形分解等。利用大气校正后的重建光谱数据,可选择性地利用上述矿物识别技术开展端元矿物的识别。光谱角方法可直接选择端元矿物进行匹配,最终生成二值图像,简单易行,在阈值合理可靠的前提下能够获取较高的识别精度。

在成像光谱岩矿地质信息识别与提取方法中,光谱角技术是一种较好的方法之一(王志刚,1993;刘庆生,1999)。光谱角识别方法是在由光谱组成的多维光谱矢量空间,利用一个岩矿矢量的角度测度函数(θ)求解岩矿参考光谱端元矢量(r)与图像像元光谱矢量(t)的相似性测度,即:

成像光谱岩矿识别方法技术研究和影响因素分析

这里,‖*‖为光谱向量的模。参考端元光谱可来自实验室、野外测量或已知类别的图像像元光谱。θ介于0到π/2,其值愈小,二者相似度愈高,识别与提取的信息愈可靠。通过合理的阈值选择,获取矿化蚀变信息的二值图像。

4.4.2.4 阈值的选择与航带间信息的衔接

无论是光谱角技术还是光谱匹配以及混合光谱分解,都存在对非矿物信息的分割,因此阈值的选择是一个必须面临的重要问题。这不仅关系到所识别矿物的可靠度,也关系到矿物分布范围大小的界定。同时由于是分航带提取,不同航带间因大气校正的误差和噪声的影响而使同一地物的光谱特征存在差异,可能使所提取的矿物空间展布特征在航带之间所有诊断和一致性,增加了制图的困难。因此对于阈值的选择,需遵循以下原则:在去除明显假象信息、保留可靠的矿化蚀变信息情况下考虑整体的一致性以及航带的过渡性。

4.4.2.5 技术流程

结合成像光谱数据预处理,根据实际应用情况,可以总结出成像光谱遥感地质调查工作的技术流程,如图443所示。



任务了解矿物鉴定的工作过程~

一、矿物样品的采集
样品采集是矿物鉴定的基础工作,是为了获得工作对象。采集样品时应注意其代表性、典型性及目的性。样品的采集要根据其分布情况及均匀程度选取适当的大小规格,以便研究矿物的宏观及微观特征、结构构造特点以及共生、变化关系,并注意颗粒大小及嵌布关系等特征。此外,还需要采集用于测定化学成分、内部结构、形态及物理性质等方面的样品。根据对矿物研究的目的性及矿物在岩石或矿石中的分布状况决定采集样品的数量。对于晶形完善或晶面复杂的矿物晶体,在采集时必须小心谨慎,切勿随意损坏。
二、矿物的分选方法
在对某种矿物进行成分、结构或物性研究时,常常需要把这种单矿物从集合体中挑选出来。试样的纯净与否,是决定研究结果是否正确的关键,而从矿物集合体中选取极为纯净的单一矿物是非常复杂的工作,往往因为分选对象的不同而采用不同的方法。
在分选之前,常常必须进行“碎样”。也就是将矿物集合体进行破碎,以便使所需的矿物与其他矿物分开。数量多时可采用破碎机破碎,数量不多也可用铁钵人工破碎。破碎粒度主要视矿物单体的粒度而定,一般情况下需要粉碎至0.2~0.4mm之间。在粉碎的同时,必须用适当的筛网过筛,以便进行粒度分级并防止“过粉碎”。在通常情况下,过筛后0.2mm以上的样品需达1千克或更多些,以便保证从中提取足够数量的单矿物。
样品破碎后,接着就是把所需矿物从碎样中分选出来。如需要的试样数量不多,则可在双目镜下用针逐粒挑选;如需要的试样数量比较多,并且手选困难又费时,则可用其他仪器进行分选。主要方法有下列几种:
重力分选 根据矿物密度的不同,可以采用淘洗和重液分离 (有时需用离心机分离);
磁力分选 根据矿物的磁性强弱不同,利用磁铁、电磁铁进行分选;
浮游分选 根据矿物对浮油剂的不同吸附性进行分选;
介电分选 根据矿物的介电常数 (ε)不同来分离矿物,例如黑钨矿 (ε=15)、铌钽铁矿 (ε=20)、方解石 (ε=6.3)、无色透明石英 (ε=4.5)等分选效果良好;
形态分选 根据矿物的形态不同 (如呈片状、柱状或粒状)来分离矿物。
矿物分选工作,尽管目前已经有许多方法,但仍不能解决矿物分选的全部问题。特别对细小矿物及高密度矿物的分选尚属困难。
近年来,电磁重液分选、高频介电分选、超声波浮选、重力分选 (矿泥摇床)和重液变温分选等方法得到推广使用。其中电磁重液分选法可将非磁性矿物按密度进行分离,它甚至可使密度大的金和铂分开;高频介电分选目前只限于对数十种矿物的分离,要求矿物最小粒度大于15~20μm;重力分选仪所分离的矿物最细可达10μm;超声波浮选主要是利用超声波产生空蚀现象使细小矿物崩解,同时利用适当捕集剂,以产生浮游分选矿物的目的;重液变温分选主要用于分离某些物理性质较相近或同一种矿物之不同世代个体的分选上。
经上述种种方法分选出的单矿物样品,为了保证其纯净度,最后必须经过双目镜下的检查和挑纯。
三、矿物的肉眼鉴定
矿物的肉眼鉴定是借助肉眼和放大镜、体视显微镜以及一些简单的工具 (如小刀、磁铁、条痕板等)对矿物的外表特征 (如晶形、颜色、光泽、条痕、透明度、解理、硬度、密度等)进行观察,从而鉴定矿物的简便方法。一个具有鉴定经验的人,利用肉眼鉴定方法,就能正确地把上百种常见矿物初步鉴定出来。肉眼鉴定法对于结晶粗大,并具显著特征的矿物,效果较好。
肉眼鉴定看起来简单,但要达到快速准确,需要经过一定的训练。特别是对细粒矿物的晶形、解理的观察,需要反复实践和对比,积累经验,才能熟练掌握。肉眼鉴定矿物有一定的局限性,某些特征相似的矿物,或者是颗粒很细小的矿物和胶态矿物,往往难以鉴别,必须采用其他方法。但是肉眼鉴定仍然是进一步鉴定和研究的基础。因为通过肉眼鉴定,可以初步估计出矿物的种或族,由此决定选用什么方法进行精确的鉴定和研究。因此,肉眼鉴定矿物是一个地质工作者必须熟练掌握的基本技能。
四、仪器鉴定
用肉眼鉴定仍然确定不了的矿物,就需要借助一定的仪器设备进行鉴定。借助仪器对矿物进行鉴定的方法很多,应根据研究目的,按照有效、准确和快速的原则进行选择。
借助仪器鉴定矿物的方法包括:
1)检测矿物化学成分的方法:简易化学试验、光谱分析、原子吸收光谱分析、激光光谱分析、X射线荧光光谱分析、极谱分析、化学分析和电子探针分析;
2)通过测定矿物某种物性或晶体结构数据从而可定出矿物种属的方法:密度测定、热分析、显微镜观察、电子显微镜观察、X射线分析、红外光谱分析、穆斯堡尔效应;
3)研究矿物形貌的方法:测角法、电子显微镜观察;
4)其他专门方法:包裹体研究、稳定同位素研究等。

矿物的肉眼鉴定一般应从矿物的形态着手,然后观察矿物的光学性质、力学性质,进而参照其他物理性质或借助于化学试剂与矿物的反应,最后综合上述观察结果,查阅有关矿物特征鉴定表,即可初步确定矿物的定名;对有疑问的矿物可将样品送实验室做仪器鉴定。
一、矿物的形态特征
1.结晶质矿物和非晶质矿物
绝大多数矿物呈固态,固态矿物中大多数为结晶质,少数为非晶质。
结晶质矿物的内部质点 (原子、分子或离子)在三维空间有规律的周期性排列。因此,在一定条件下,每种结晶质矿物都具有固定的规则几何外形,这就是矿物的固有形态特征。例如,石盐具有良好固有形态的晶体。在自然界中,这种自形晶较少见到,因为在晶体生长过程中,受生长速度和周围自由空间环境的限制,晶体发育不良,形成了不规则的外形,称为他形晶,而岩石中的造岩矿物多为粒状他形晶体的集合体。
2.矿物的形态习性
一向延伸类型 晶体向一个方向发育,形成柱状、针状、纤维状晶体,如辉锑矿、电气石等。
二向延伸类型 晶体向两个方向发育,形成板状、片状晶体,如石墨、云母等。
三向延伸类型 晶体向三个方向发育均等,形成立方体、八面体等晶体,如石榴子石、黄铁矿等。
3.晶面条纹
晶面条纹是指晶体的晶面上呈现的平行而宽窄不一的阶梯状条纹。如黄铁矿的晶面条纹、石英柱面上的横纹、电气石柱面上的纵纹等。
4.矿物集合体形态
同种矿物多个单体聚集在一起的整体,称为矿物的集合体。自然界中绝大多数矿物是以集合体方式出现的。矿物集合体的形态千姿百态、绚丽多彩。
矿物集合体的形态取决于单体的形状和它们的集合方式。常见的矿物集合体形态有:
(1)显晶集合体
柱状集合体——普通角闪石、电气石、红柱石 纤维状集合体——石膏、石棉
片状集合体——云母、镜铁矿 粒状集合体——橄榄石、石榴子石
晶簇——石英、方解石
(2)隐晶及胶态集合体
结核状——钙质结核、黄铁矿结核 鲕状及豆状——赤铁矿
钟乳状——方解石 土状——高岭土
二、矿物的光学性质
矿物的光学性质是指矿物对光线的反射、折射、吸收等所呈现的光学现象,矿物的光学性质包括矿物的颜色、条痕、光泽和透明度。
1.颜色
矿物的颜色取决于其化学成分和内部结构,矿物的颜色分为自色、假色和他色。自色是指矿物本身所固有的颜色,是由矿物成分中所含的色素离子决定的,因而比较稳定;他色是由带色杂质的机械混入所染成的颜色,他色在矿物中随着混入物的不同而不同,例如纯净的石英是无色透明的,而含有少量的氧化锰时呈紫色,含气泡时呈乳白色;假色是矿物表面的氧化物及内部的解理、裂隙、包裹体等引起光波的干射而呈现的颜色。对颜色的描述可采取标准色谱法、实物对比法及综合法 (详见学习情境2任务2)
描述时要注意:矿物颜色应以新鲜干燥矿物为准,如果矿物表面遭受风化而颜色发生了变化时,则需刮去风化表面后再进行观察描述。
2.条痕
条痕能够消除假色,减弱他色,因而比矿物的颜色更为稳定,是鉴定深色矿物的重要依据。条痕色的描述方法与颜色相似。鉴定时需注意:擦划条痕时,用力要均匀;观察测试的矿物应选新鲜标本。
3.光泽
光泽是指矿物表面对光的反射能力的表现。矿物表面对光的反射越大,光泽就越强,反之则弱。根据矿物对可见光的反射能力,将光泽分为金属光泽、半金属光泽、金刚光泽及玻璃光泽 (详见学习情境2任务2)。这四种光泽是指矿物单体晶面或解理面所呈现的光泽。如果矿物表面不平,或者为矿物的集合体,由于光线多次折射、反射而增加了散射光量,常使光泽发生变异,而呈现出各种特殊光泽。如油脂光泽、丝绢光泽、珍珠光泽、蜡状光泽、土状光泽等。
观察矿物光泽时,一定要在新鲜面上观察,主要观察晶面和解理面上的光泽。
4.透明度
透明度是指可见光能够透过矿物的程度,观察矿物的透明度时矿物的厚度应以0.03mm为标准。依据光线透过的程度,可将矿物分为透明、半透明、不透明三个等级。
观察描述矿物光学性质时,一定要注意掌握颜色、条痕、光泽和透明度四者之间的关系。金属光泽的矿物,其颜色一定为金属色,条痕为黑色或金属色,不透明;半金属光泽的矿物颜色为金属色或彩色,条痕呈深彩色或黑色,不透明至半透明;非金属光泽的矿物颜色为各种彩色或白色,条痕呈浅彩色到白色,半透明至透明。
三、矿物的力学性质
矿物的力学性质是指矿物在外力作用下所呈现的性质,包括矿物的硬度、解理和断口。
(1)解理
光滑的平面称为解理面。
观察解理等级 根据解理面的完好程度通常分为极完全解理、完全解理、中等解理和不完全解理四个等级。中等解理和不完全解理有时难以区分,可写成中等-不完全解理。
观察解理组数 矿物中相互平行的一系列解理面称为一组解理。注意观察云母、正长石、方解石、萤石的解理组数。
观察解理面间的夹角 两组及两组以上的解理,其相邻两解理面间的夹角亦是鉴定矿物的标志之一。注意观察正长石、辉石、角闪石、萤石的解理夹角。
需要注意的是,肉眼观察矿物的解理只能在显晶质矿物中进行。确定解理组数和解理夹角必须在一个矿物单体上观察。
(2)断口
矿物在外力作用下破裂成不规则不平坦的断面,称为断口。矿物的解理和断口是互为消长的,解理完全时则不会出现断口,反之,解理不完全或无解理时则断口显著。
(3)硬度
硬度是指矿物抵抗机械作用的能力。由于矿物的化学成分和内部结构不同,所以矿物的软硬程度也不一样,肉眼鉴定矿物时常用摩氏硬度计测定矿物的相对硬度。
野外工作中为了方便,常采用指甲 (硬度为2.5±)、小刀 (硬度为5.5±)等作为标准测定相对硬度。
(4)矿物的其他性质
除了上述性质之外,矿物的其他性质,如云母的弹性,高岭石的吸水性、可塑性,磁铁矿的强磁性,方解石遇盐酸起泡等性质也是我们鉴定矿物的重要依据。

生物识别技术有哪几种,各有什么特点
答:1、面部识别是非接触的,用户不需要和设备直接的接触; 面部识别的缺点: 1、尽管可以使用桌面的视频摄像,但只有比较高级的摄像头才可以有效高速的扑捉面部图像; 2、使用者面部的位置与周围的光环境都可能影响系统的精确性; 3、大部分...

触摸屏物体识别到底是怎么实现的
答:三、从触摸屏控制盒(器)与计算机的连接方式上区分:各种触摸屏与计算机的连接,一般都与计算机的串口相连(也有USB接口的),是信号部分;同时触摸屏还需要电源输入部分,由计算机供给。ELO 产品均从计算机的主板键盘接口取电...

生物识别有哪些种类?
答:静脉识别,使用近红外线读取静脉模式,与存储的静脉模式进行比较,进行本人识别的识别技术。工作原理,是依据人类手指中流动的血液可吸收特定波长的光线,而使用特定波长光线对手指进行照射,可得到手指静脉的清晰图像。利用这一固有的科学特征,将...

什么是生物识别?
答:[编辑本段]几种常见的生物特征识别方式 1.指纹识别 指纹是指人的手指末端正面皮肤上凸凹不平产生的纹线。纹线有规律的排列形成不同的纹型。纹线的起点、终点、结合点和分叉点,称为指纹的细节特征点。指纹识别即指通过...

生物识别技术的研究方法汇总
答:1. 指纹识别 实现指纹识别有多种方法。其中有些是仿效传统的公安部门使用的方法,比较指纹的局部细节;有些直接通过全部特征进行识别;还有一些使用更独特的方法,如指纹的波纹边缘模式和超声波。有些设备能即时测量手指指纹,...

矿物识别方法和工作流程
答:在对成像光谱数据特征与识别方法的比较研究中,结合工作实际以及进行工程化处理的初步要求,在确保识别精度的条件下,设计出标准数据库光谱+光谱-特征域转换+矿物识别方法的技术流程。该流程的主要作用:(1)直接开展蚀变矿物的识别与信息提取:...

对标的层次和维度-识别事物的基本方法(三)
答:对比是识别事物的基本方法对比——横向、纵向及多维度对比比值比率背后的逻辑指标的逻辑与管理指标对标的层次和维度标杆管理与榜样的力量。 4.5 对标的层次和维度 当设定了各项管理指标之后,剩下的就是比较工作了。通过比较,我们才能发现各...

工业RFID读写器工作原理和流程
答:标签发送的数据通过内置发送天线,被读写器的接收天线捕获,然后进行解码处理,传递至后台系统进行深度分析。工作流程如同一场精密的交响乐:</ 读写器发射的射频信号如导线,引导电子标签的响应。当标签激活,其内置的数据就...

昆虫触角的形状和着生的位置是鉴别昆虫种类的重要特征对吗
答:为识别和鉴定某一类群时,首先必须熟悉有关该类群的基本知识,了解该类群分类中常用的一些特征及其变化情况,理解一些常用术语的含义,并掌握检索表的使用方法。 昆虫纲除原尾目无触角,和膜翅目幼虫的触角退化外,其它种类都有触角. 触角一般...

如何利用感官鉴别法鉴别棉、麻、丝、羊毛及涤纶、锦纶、维纶、腈纶...
答:可以通过这几种材料的不同特点,通过以下方法把它们分辨出来:1,听音:蚕丝在摩擦时会产生独有的“丝鸣”现象,即“沙沙”声。2,静电:丝和毛不易起静电,但是所有的合成纤维都容易产生静电和气球。可以通过这种方式来判断...