什么是最小二乘法及其原理 什么叫最小二乘法原理

作者&投稿:涂牧 (若有异议请与网页底部的电邮联系)
我用括号把层次分开,简单的说就是:
让(((采样的点)跟(拟合的曲线)的距离)总和)最小.
楼上的说法有问题,不是非要直线不可,任何曲线都可以的.

最小二乘法
在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
Y计= a0 + a1 X (式1-1)
其中:a0、a1 是任意实数
为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。
令: φ = ∑(Yi - Y计)2 (式1-2)
把(式1-1)代入(式1-2)中得:
φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)
当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。
(式1-4)
(式1-5)
亦即:
m a0 + (∑Xi ) a1 = ∑Yi (式1-6)
(∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)
得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:
a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)
a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9)
这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。
在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。
R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *
在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一 最小二乘法
从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求 与 之间近似成线性关系时的经验公式. 假定实验测得变量之间的 个数据 , , …, , 则在 平面上, 可以得到 个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为 与 之间近似为一线性函数, 下面介绍求解步骤.
考虑函数 , 其中 和 是待定常数. 如果 在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线 来描述 , 时, 计算值 与实际值 产生的偏差. 当然要求偏差越小越好, 但由于 可正可负, 因此不能认为总偏差 时, 函数 就很好地反映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用 来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用 来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定 中的常数 和 , 使 为最小. 用这种方法确定系数 , 的方法称为最小二乘法.

这个一般是求线性回归的东西, 假设采n个点, 采样点(xi,yi) (i=1...n) 如果是空间的点则是(xi,yi,zi) 如果像一条直线,则设直线方程位y=kx+b(如果像其它图形,则设为其它形状的方程) 所以回归后 理论上xi对应的yi应该等于kxi+b 实际上是会有偏差的 所以一般情况yi-(kxi+b)不等于0 要想求出最精确的直线 就是要让i从1到n 所有(yi-kxi-b)^2加起来的最小值 即min(∑((yi-kxi-b)^2)),可见当所有点都在直线上时,最小值是零.对于其它图形也是一样,只不过方程不同而已.

是想让拟合的直线方程与实际的误差最小。
由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。
但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。

楼上的说法有一点点问题,是平方和最小,虽然差别不大,有时还是有明显区别的。

什么是最小二乘法及其原理?~

最小二乘法(又称最小平方法)是一种数学优化技术。
它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
原理:
在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
(式1-1)
其中:a0、a1 是任意实数
为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用计算值Yj(Yj=a0+a1Xi)(式1-1)的离差(Yi-Yj)的平方和 最小为“优化判据”。
令:φ = (式1-2)
把(式1-1)代入(式1-2)中得:
φ = (式1-3)
当 最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。
∑2(a0 + a1*Xi - Yi)=0(式1-4)
∑2Xi(a0 +a1*Xi - Yi)=0(式1-5)
亦即:na0 + (∑Xi ) a1 = ∑Yi (式1-6)
(∑Xi ) a0 + (∑Xi^2 ) a1 = ∑(Xi*Yi) (式1-7)
得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:
a0 = (∑Yi) / n - a1(∑Xi) / n (式1-8)
a1 = [n∑(Xi Yi) - (∑Xi ∑Yi)] / (n∑Xi^2 -∑Xi∑Xi)(式1-9)
这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的一元线性方程即:数学模型。
在回归过程中,回归的关联式不可能全部通过每个回归数据点(x1,y1. x2,y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。
R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *
在(式1-10)中,m为样本容量,即实验次数;Xi、Yi分别为任意一组实验数据X、Y的数值。
以最简单的一元线性模型来解释最小二乘法。
什么是一元线性模型呢?监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面。

用各个离差的平方和M=Σ(i=1到n)[yi-(axi+b)]^2最小来保证每个离差的绝对值都很小。解方程组?M/?a=0;?M/?b=0,整理得(Σxi^2)a+(Σxi)b=Σxiyi;(Σxi)a+nb=Σyi。解出a,b。 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中, 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化数据”。 令: φ = ∑(Yi - Y计)2 (式1-2) 把(式1-1)代入(式1-2)中得: φ = ∑(Yi - a0 - a1 Xi)2 (式1-3) 当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。 (式1-4) (式1-5) 亦即: m a0 + (∑Xi ) a1 = ∑Yi (式1-6) (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7) 得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出: a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8) a1 = [n∑Xi Yi - (∑Xi ∑Yi)] / [n∑Xi2 - (∑Xi)2 )] (式1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。 在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。 R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) * 在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。

什么是最小二乘法及其原理?
答:最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来...

什么是最小二乘法原理?
答:最小二乘法是一种用于寻找数据最佳拟合线或曲线的方法。它的核心思想是,通过最小化 观测数据点与拟合线(或曲线)之间的垂直距离的平方和,来确定最佳拟合的参数。想象一组散点数据,你想要找到一条直线或曲线,使得所有这些点到这条线(或曲线)的距离之和的平方尽可能小。最小二乘法就是为了找...

最小二乘法的原理是什么?
答:最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误养的平方和为最小。最小二乘法还可用于曲线拟合。2、原理 未知量的最可能值是使各项实际观测值和计算值之间差的平...

简述最小二乘估计原理。
答:最小二乘估计的基本原理 对于x和y的n对观察值,用于描述其关系的直线有多条,究竟用哪条直线来代表两个变量之间的关系,需要有一个明确的原则。这时用距离各观测点最近的一条直线,用它来代表x与y之间的关系与实际数据的误差比其它任何直线都小。根据这一思想求得直线中未知常数的方法称为最小二乘...

什么叫最小二乘法
答:最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来...

最小二乘法的基本原理是什么?
答:最小二乘法的基本原理是通过最小化误差的平方和来寻找数据的最佳函数匹配。它主要用于曲线拟合,以解决回归问题。最小二乘法是一种在误差估计、不确定度、系统辨识及预测、预报等数据处理诸多学科领域得到广泛应用的数学工具。最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方...

统计学ols方法的原理
答:普通最小二乘法(OLS)方法的原理是:利用最小二乘法可以简便地求得未知的数据,并使得所选择的回归模型应该使所有观察值的残差平方和达到最小。具体验证如下:样本回归模型:其中ei为样本(Xi,Yi)的误差。平方损失函数:则通过Q最小确定这条直线,即确定β0和β1,把它们看作是Q的函数,就变成了...

最小二乘法的原理是什么?
答:具体来说,最小二乘法的原理可以概括为以下几个步骤:建立模型: 首先,需要确定一个数学模型来描述数据的关系。这个模型可以是线性的、非线性的,甚至是高阶的。定义误差: 对于每个观测点,计算实际观测值与模型预测值之间的差异,这被称为残差。残差表示了观测值与模型之间的偏差或误差。最小化残差...

最小二乘法的原理是什么?
答:普通最小二乘法(OLS)方法的原理是:利用最小二乘法可以简便地求得未知的数据,并使得所选择的回归模型应该使所有观察值的残差平方和达到最小。具体验证如下:样本回归模型:其中ei为样本(Xi,Yi)的误差。平方损失函数:则通过Q最小确定这条直线,即确定β0和β1,把它们看作是Q的函数,就变成了...