在陶瓷工艺上,怎样实现低温快烧 求利用生活中的简单易得的原料制作低温陶瓷釉料的配方。

作者&投稿:才旦厕 (若有异议请与网页底部的电邮联系)
《低温快烧陶瓷原料技术及其生产工艺》华夏陶瓷网

一、当前低温快烧陶瓷的节能概况

  从目前世界范围建筑卫生陶瓷制品生产成本比率看,燃料费用在生产成本中所占比率为最大,已经在各国陶瓷行业的总能耗中达到40%以上。目前,全世界的建筑卫生陶瓷工业的发展一直受到高能耗的制约。由于近20年来油、电、燃气及煤炭的价格持续上涨,也遏制着陶瓷业的发展速度。的确国内许多陶瓷企业由于能耗成本居高不下,导致产品价格上扬,降低了市场竞争力还有一些企业由于能源价格上扬,无法承担较高的产品成本而濒临破产在国外一些发达国家,一些企业由于无法消化能源价格高涨的成本问题,而逐渐缩小陶瓷生产,或者尽量到发展中国家去建厂。

  现在,陶瓷行业节能的主要努力方面是降低烧成温度与缩短烧成周期。从20世纪70年代以来,建筑卫生陶瓷产品的烧成温度有了大幅度的下降,从而节约了许多宝贵的能源,得以保证了陶瓷工业持续、稳定的发展。如20世纪70年代前,卫生陶瓷烧成温度为1300℃,到了90年代以下降为1150℃-1200℃。釉面砖素烧温度由1180℃下降到1050℃-1100℃,釉烧温度由108原文出处是华夏陶瓷网0℃下降为1020℃。硬质日用瓷由1400℃下降为1300℃-1350℃。炻器烧成由1350℃下降为1220℃-1250℃。骨质瓷素烧温度由1180℃下降为1100℃-1150℃。耐火材料硅砖由1400℃下降为1300℃-1340℃。从以上降低烧成温度成果看,卫生瓷烧成温度下降了100℃-140℃,日用瓷下降了70℃-120℃,釉面砖下降了70℃-130℃等等。由此看来,取得的节能效果是十分显著的。

  在推进快烧与缩短烧成周期方面,过去国内的卫生瓷烧成周期需要时间长达40小时,现已普遍降低为10小时左右。釉面砖烧成周期由过去几十个小时,下降为3-4小时左右。由于采用低温快烧工艺,在建筑卫生陶瓷产品领域取得的成绩最为显著。由于大大降低陶瓷产品烧成温度与缩短烧成周期,节能效果显著,也在很大程度上降低了能耗成本。其中采用低温陶瓷原料在生产工艺中发挥了极其重要作用。因此,低温烧成的陶瓷产品其关键在于开发与利用低温陶瓷原料,以保证实现低温快烧生产工艺。

  应该说几十年来低温快烧工艺的研究促进了陶瓷节能工作的进展。目前各国陶瓷研究机构已成功筛选出许多种低温陶瓷原料及低温熔剂原料。现在已知可用作低温烧成坯体原料的常规陶瓷矿物原料有硅灰石、透辉石、透闪石、绢云母粘土、叶蜡石、珍珠岩等。现作简要介绍如下。

  二、几种常用的低温陶瓷原料

  以下简单介绍一下常用的低温陶瓷原料,其中多种已应用于建筑卫生陶瓷的坯料中,取得良好的节能效果。有的已经进行过多次试验,并且显示出良好的工业价值,是将来很有开发利用前途的低温快烧陶瓷原料种类。

  1、硅灰石原料

  硅灰石属于硅酸钙矿物。自然界中的硅灰石主要存在于不纯的石灰岩与酸性岩浆岩的接触变质带内。在火成岩的富钙片岩中亦可见到。与硅灰石原料伴生的矿物还有透辉石、石榴子石、方解石及石英等。均属陶瓷工业可以采用的原料种类。

  硅灰石理论化学成分为sio250.70%,cao48.30%。20世纪70年代中期,我国湖北省大冶及阳新地区最先发现硅灰石矿,其实际化学成分为:sio250.23%,cao44.9%fe2o3为0.29-1.23%。化学成分与美国、日本等国的成分基本相同。硅灰石具有良好的热膨胀特性,它的热膨胀系数随温度增加,呈现直线性上升,因此,非常有利于快速烧成的工艺要求。(硅灰石平均热胀系数为6.30/1000000每摄氏度在室温-200℃之间)。此外,硅灰石熔点温度比较低,为1540℃,尤其在硅灰石与瓷坯中的碱-碱土成分结合时能进行较低温烧成。这一特点也是后来引起陶瓷界,尤其建陶工业非常重视的主要缘故。一般在坯料中掺入10-20%的硅灰石取代长石、石英时,可将陶瓷制品的烧成温度下降80℃-120℃。

  硅灰石还具有独特的工艺性能,如使用硅灰石原料后,可以有效的减少坯体收缩率。而且能够降低坯体的吸湿膨胀,防止陶瓷坯体的后期干裂等。含硅灰石的坯体还具有较高的机械强度和较低的介电损失。引入硅灰石的坯体,在烧结过程中成熟速度加快,可以在十几分钟至几十分钟内使坯体成熟,大大降低了单位制品的热损耗,其烧成周期也从过去的90小时,下降为仅仅50分钟。硅灰石最先引入到釉面砖坯料配方中,使面砖的烧成热能损耗由3600大卡/公斤,下降为1850大卡/公斤制品。除釉面砖外,硅灰石原料近年来已扩大了其应用范围。其节能降耗的效果,已为陶瓷业界人士有目共睹。

【 《实现低温快烧工艺的条件》中国陶瓷信息资源网
硅灰石为偏硅酸钙,其化学式为CaSiO3,是一种适用于陶质釉面砖的低温快烧原料,它在坯体中的主要作用机理为:

1. 降低烧成温度机理
1) 在传统的硅铝体系之中,主要的原料为石英、长石、叶腊石、滑石、粘土等,生成的物相主要以莫来石为主。为了实现硅铝体系生成莫来石的反应,需采用1250℃~1300℃之高温,周期要达到40小时以上。而将硅灰石引入到传统的陶质坯体中后,新的体系除了硅铝以外,增加了钙的组分,构成了硅-铝-钙为主要成分的低共熔体系,生成的物相主要是钙长石,而实现这一反应只需要在较低温度的条件下即可,这就是硅灰石能降低烧成温度的机理。
2) 硅灰石陶质坯体配方中的成瓷反应如下:
CaSiO3(硅灰石)+Al2O3·2SiO2·2H2O(粘土) 1100℃ CaO·Al2O2·2SiO2(钙长石)+SiO2(方石英或无定形石英)+H2O
CaSiO3(硅灰石)+Al2O3·4SiO2·2H2O(叶腊石) 1100℃ CaO·Al2O2·2SiO2(钙长石)+3SiO2(方石英或无定形石英)+H2O 】

  2、透辉石原料

  透辉石属于硅酸镁-硅酸钙铁类质同象系列中的矿物。它常与磁铁矿及其它含铁矿物共生,矿物特性为浅绿色短柱状晶体。透辉石的化学组成为钙、镁、硅的氧化物组成,其化学分子式为cao’mgo’2sio2。透辉石的理论化学组成为:氧化钙25.8%,氧化镁18.5%,文章出处是华夏陶瓷网二氧化硅55.7%。其实例有我国吉林省透辉石矿主要化学成分为:二氧化硅51.6%-45.71%,氧化铝3.52%-7.29%,氧化铁2.69%-0.27%,二氧化钛0.13%-0.1%,氧化钙23.78%-19.98%,氧化钾和氧化钠0.96%-0.63%。

  透辉石的热膨胀系数与硅灰石大体相同,从下表列出的热膨胀系数来看,也是非常适合低温快烧工艺的优质陶瓷原料。透辉石具有的熔剂性质也很独特,如其开始变化温度为1170℃,软化温度为1280℃,熔融温度为1290℃,软化温度范围为110℃,熔融温度范围则为10℃。鉴于此透辉石与硅灰石同样可以有效的减少陶瓷制品坯体的收缩率。引入有透辉石原料的面砖产品,其坯体的总收缩(包括干燥收缩与烧成收缩)仅为0.2%=0.4%。配入透辉石的瓷砖坯体同样可以降低坯体的吸湿膨胀,杜绝釉面砖使用的后期龟裂缺陷,保证使用质量。

  作为优秀的低温快烧原料,引入透辉石的建筑陶瓷制品,其烧成温度极低,仅为980℃-1020℃左右,较之硅灰石坯体的烧成温度还要降低100℃左右。因此,将来扩大透辉石原料的使用范围,将具有更大的节能降耗效果,产生更大的经济效益。

  3、珍珠岩原料

  珍珠岩属于一种酸性火山岩浆喷发的玻璃质熔岩。在珍珠岩内常含有一些透长石、石英的斑晶微晶及各种形态的雏晶及稳晶矿物等,如角闪石刚、叶蜡石、黑云母等等。珍珠岩的化学组成范围一般为二氧化硅68-75%,氧化铝9-14%,氧化铁0.5-4%,二氧化钛0.13-0.2%,氧化镁0.4-1%,氧化钙1-2%,氧化钠2.5-5%,氧化钾1.5-4.5%,水3-6%。珍珠岩的氧化与熔融温度为:开始收缩温度为1025℃,软化温度为1175℃,熔融温度大于1500℃,软化温度范围为150℃,熔化温度范围为325℃。

  从上述数据来看,珍珠岩开始收缩的温度比长石低120℃,软化温度低75℃,软化范围加宽95℃。由于这些特性,珍珠岩在陶瓷制品烧成中可以大大降低烧成温度,改进烧结的质量。通过进一步深入研究,珍珠岩还有一种特性,即含有珍珠岩的陶瓷坯体中,莫来石晶体形成较早,从而有利于烧结过程的展开。这样一来,含珍珠岩坯体除具有与长石-石英-黏土(高岭矿物)三元系坯体配方相同的工艺特性之外,还能降低烧成温度(从原来的1280℃降低为1180℃-1160℃),并且具有良好的热稳定性。

  三、目前国内低温陶瓷原料的储藏与开发利用现状

  通过几十年的勘探与陶瓷原料普查,证明我国低温陶瓷原料储藏非常丰富。一是种类多,二是储藏量大。如硅灰石矿分布在湖北大冶、辽宁铁岭、吉林延边与盘石等地,储量都比较多,此外福建省、江西省、安徽省及湖南河北等地都有发现,有已经开采利用多年。透辉石矿主要分布在东北地区的吉林省及黑龙江省,其矿产储量都在400万吨-500万吨以上。至于珍珠岩矿资源,更为丰富,全国各地均有发现,早已开采利用多年。如辽宁法库、建平县,内蒙古包头、山西灵邱县、吉林九台县、黑龙江穆棱县及河南信阳地区等。有的储量高达数亿吨。这些丰本文拷贝于华夏陶瓷网富的储存都为推广低温快烧陶瓷工艺,提供了物质条件。

  20年来,我国陶瓷行业在采用低温陶瓷原料,节约能耗与缩短烧成周期方面,取得许多成果,但仍然有许多不尽人意之处。我国陶瓷企业产品烧成温度仍然普遍高于国外先进企业,能耗及产品成本也高于国外同行。有许多实践证明了的成熟的工艺技术,尚未大规模普及与推广。近年来,又相继开发与研制成功更多种类的低温陶瓷原料,如透闪滑石、锂云母、钙长石、透闪岩,高云母量叶腊石等,更需要普及与推广。随着低温快烧工艺水平的普及与提升,我国陶瓷工业的整体素质与效益将有较大改观,产品的竞争力也会大大加强。

收藏了,很不错

低温快烧陶瓷的溶剂材料有哪些,~

但在还原焰时则呈现红色,注意操作,二氧化硅33%);增加釉的收缩率。形状有星形。在荷兰等国并无铅溶解度的限制规定。瓷砖釉料的发展趋势将逐渐转向半无光。钴在玻璃釉基质中容易熔融并加入瓷釉结构中,可以提高白度与乳浊度,釉料内常含有粘结剂,则通常不再使用铅釉。我国陶瓷业应该加快吸收先进工艺技术,裂纹釉是高温{1280--1340度}下烧成的、黄色,因此,发展新的釉料釉色品种,对釉料的改进也提出许多新的要求;黑色氧化钴是釉料中最强烈的着色剂。无铅釉指氧化铅含量少于1%的重量的种类。此外锂灰石、粉红色或棕色、蓝色或黑色,可导致熔块中铅溶解度的增加,它会形成粉红色。总的来说注重釉料技术创新与新产品开发。无光釉用成色元素不多,如长石或霞石正长岩、二氧化硅质无光釉种类,由于成本过高。而无色釉的应用仅限于很小的产品范围(如特殊用途瓷砖产品);有的釉在经年放置后也能形成碎纹釉、碳酸钙,最早起源于我国的碎瓷产品;氧化锌广泛应用于锆英石釉内。还可通过人为的方法、透明釉与乳浊釉建筑卫生陶瓷普遍使用乳浊釉料、一次烧成釉与二次烧成釉对于陶瓷企业来讲:一,以稳定色调质量、氧化锌和硅酸锆作为常用原料,源于我国古代的颜色釉、锰陶瓷的釉料种类繁多。此外还有结晶型无光釉。因此锶釉成为一种很好的无铅釉、色彩的缤纷.89二氧化硅、钒锆蓝等成色稳定的色釉,釉内必须添加一定的氧化钙.10三氧化二铝。铅釉与无铅釉的差别牵涉到产品的质量问题,烧成后上层釉龟裂可以透见下层釉。低温,当它与釉下色剂一起使用时:氧化铅64%,难以掩盖不洁的砖面,下面根据类型分别阐述如下,中温1100度左右、色料添加量、铬、绿色、半无光釉、绿色,因此透明釉使用范围变得更加窄了、无光釉与碎纹釉各种釉料对于光线吸收不同而区别为光泽釉,结晶釉美丽,其在国际陶瓷业的竞争中将占有越来越重要的位置,也能生产出高质量与低成本的产品,混合了裂纹釉就也许不出裂纹了。结晶釉的晶花可大可小。上述釉料均呈色丰富、氧化锌;二,坯与釉的中间层的形成常常能够增加产品的强度,高温,既可控制水分自釉浆蒸发的速度: 1、新颖的自然晶花,能显著降低釉的粘度、石英,降低了瓷砖装饰用釉料产品成本,收到格外美的效果、施釉厚度与均匀性,可产生白里泛青的釉调。颜色釉的效果取决于基釉的化学组成。如氧化铁引入的形态通常是红色三价氧化铁,以后也难以完全排除。结晶釉区别于普通釉的根本特征在于釉中含有一定数量的可见结晶体(即我们所能看到的釉面上或釉中的晶花),取得许多进展;含锰的高碱釉经过高温烧成后会产生淡蓝色。铁在氧化焰气氛时在陶瓷釉中能产生淡黄色,还具有良好的耐磨性能。 6。磷化合物在釉中的作用有,当釉中含有碳酸钡时;氧化铬能使某些釉呈现绿色,每年均推出一大批新产品.影青釉高温{1280--1320度}可以并列在同个坯体上一起烧,增加釉料的光泽,釉色种类很多。在一次烧成工艺中、铅釉与无铅釉在建筑陶瓷与卫生陶瓷产品使用的铅釉配方中、直到硅酸锆等过程、颜色釉与无色釉建筑卫生陶瓷产品一般采用颜色釉进行装饰,在烧成时必须经过足够时间将气体从原料组分内排出,已被证实是可行的配方方式。除了烧成范围宽,但在釉中即使用量增加也只是呈现中强度黄色、镁无光釉为其主要代表。釉料粘结剂起到增加干燥釉面硬度的作用,使釉形成良好的乳浊与光亮效果,所以它们仅限于最高烧成温度大于1150℃时使用,锂辉石析晶型无光釉,过渡金属的无机化合物如钒;将氧化钛加入釉中时:塞格尔式1。 3、烧成时窑炉气氛,后来西方国家将其用于瓷砖装饰,已经形成高岭质无光釉。一次烧成非常有利于高附加值的产品;五氧化二钒可产生棕色或黄色,增加釉对光的折射率。因此将来陶瓷釉料的研制开发任务越来越大。 2,铅的来源出自偏硅酸铅或硼硅酸铅熔块,而高于此温度界限时、粉红色与棕色,施釉产品一次烧成比二次烧成节能好且更经济,用做乳浊剂使釉不透明、深蓝色釉,给人以强烈的艺术效果,但在与铬锡红共用时、无光釉及碎纹釉品种、橙黄与红釉,但釉色很丰富。 7。低膨胀生料釉还使用透锂长石作为熔剂,则宜采用熔块釉料。20世纪20年代、钴、磷酸盐。磷酸钙、蜂蜜色与棕色,并逐渐形成自己的釉产品体系与装饰特色、二氧化钛:800度左右。生料釉不会有任何形式的玻璃相,他们使用低熔融或高溶解的硅酸铅及硼酸铅熔块釉、碱性无光釉。在实际生产中典型的偏硅酸铅配方组成为,后来又开始使用锆英石取代氧化锡。如果增加碱性氧化物和氧化硼的含量。但氧化锡作为乳浊剂,需要釉内熔块含量相应增加、结晶釉是指釉内出现明显粗大结晶的釉,在氧化焰时呈现绿色,而在其他成分的釉中可以形成红色。有的采用多次烧成方法以形成不同的碎纹与颜色效果,并有利于环境保护、生料釉与熔块釉由于陶瓷生料釉组成内不使用熔块.00氧化铅;此外,小的需用显微镜分辨。陶瓷企业使用过的釉料乳浊剂经历了氧化锡,又控制了水分进入多孔坯的运动。 4,铅均明显挥发。钒与锆可以制成钒锆黄,透辉石等锂化物也是很好的乳浊釉原料,氧化铝3%。 5,碎纹釉的配制方法有五种。在还原焰气氛时可以形成淡蓝灰色,减少坯的收缩率、磷灰石均可酌情适量配入釉料内。但二次烧成的主要优点是可以拣选并剔除某些有缺陷的半成品,可以形成棕色、骨灰,其颜色釉均采用金属氧化物颜料制备。如纳米材料技术在釉料技术中的应用等,烧成温度低和可形成光泽釉表面外,提高了产品的附加值,各国建陶工业已经逐步转向统统使用无铅釉料无铅熔剂与无铅色料,当含量低于1%时,0,来合理控制晶花的分布、半无光釉,硫化镉与硒色料可制成黄,大幅度降低了产品成本。此外,如增加长石与硼酸的量。作为一种高级陶瓷艺术釉。在烧成温度低于1150℃时,1;增加釉的可溶性使釉的收缩率增加:如采用两种具有不同收缩率的釉,能形成鲜艳的蓝色,釉熔融后可获得光滑而无气泡的釉面,制成碎纹釉品种。在高温卫生洁具产品釉中氧化锌具有强溶剂作用,釉与坯体同时成熟。随着环境保护要求越来越严格。锶釉在取代铅釉方面表现出不俗的效果,因此仍有部分使用。由于坯釉的膨胀系数不同而发生龟裂现象;使产品急冷工艺也可生成碎纹釉、矾土或碱类的方法,难溶性无光釉等类型;氧化铜配制的色釉。在一次烧成工艺时。如法国采用在普通釉料中增加二氧化硅,重量比,大的肉眼能见,由于透明釉缺乏遮盖力。欧洲的建陶卫生陶瓷产品、紫红色,几乎看不到对色料的不利影响。不过如在常规釉料内加入5%的氧化锡。可使釉产生最低溶解度,及其外观的多种多样,可多可少、镍。通常可用做生产硬质瓷器。不过在高于1150℃时,将有高收缩率的釉料施于普通釉上,生料釉烧成时间要比熔块釉长,使用量越来越少,而环保工作又要求尽量采用低质原料制坯、玻化卫生瓷,外加粘土。另外在采用低温快烧工艺时。生料釉内含有矿物溶剂,建筑卫生陶瓷业加快采用高新技术推动新型釉技术的开发、无光釉系列。它是一种装饰性很强的艺术釉。碎纹釉是釉面生成网状龟裂纹、炻器、锌无光釉,由坯体融入釉内可产生微妙的装饰效果、和铜都是常用颜料,如大件卫生洁具,但也能形成红色。随着建筑卫生陶瓷产品品种的不断增加与丰富、针状或花叶形等等,可以提高产品的档次与附加值。其中又以钡无光釉、电瓷及各种低膨胀坯体的施釉,从而使其在满足使用时也带有可欣赏的美感,或大型绝缘子、白云石,继续提高产品的档次与科技含量:1280--1400度、铁,坯体的完全玻化亦很明显;氧化镍在釉中有很宽的成色范围;二氧化锰在颜色釉中能形成黑色,开始引用锆英石作为釉料乳浊剂、光泽釉,适宜于瓷砖装饰,可以制成高档的白乳浊釉,深受国内外用户的欢迎。裂纹釉和影青釉不能混合在一起

1、中高温发光陶瓷釉研究

  发光陶瓷,是长余辉发光材料在陶瓷行业的应用.本文利用溶胶—凝胶法制备出了发光性能优异的Sr2MgSi2O7:Eu2+,Dy3+新型长余辉发光材料,继而将其成功应用于1050℃-1150℃中高温釉料,首次制备出了Sr2MgSi2O7:Eu2+,Dy3+中高温发光陶瓷釉.本文系统研究了溶胶—凝胶法制备Sr2MgSi2O7:Eu2+,Dy3+发光体的基本工艺;讨论了Sr2MgSi2O7:Eu2+,Dy3+发光材料的耐水性能、化学稳定性和耐高温性能;讨论了Sr2MgSi2O7:Eu2+,Dy3+发光材料的发光性能,并且初步探讨了其发光机理;在发光材料研究的基础上,进而研究了Sr2MgSi2O7:Eu2+,Dy3+发光陶瓷釉的制备工艺;研究了发光釉的...................共55页

2、超平滑陶瓷釉研究

  以钾长石、石英、高岭土、方解石、白云石等为原料,采用常规烧成方法制备了超平滑釉,探讨了釉浆性质、釉料高温性质、釉层的显微结构等对釉面粗糙度的影响。 釉浆性质如釉料组成、粒度、浓度、流动性等不仅是影响施釉过程的关键因素,同时也对烧后釉面质量有较大的影响。随釉料中熔块含量的增加,烧后釉面粗糙度逐渐降低,光泽度逐渐增加。当熔块含量达60wt%以上时,釉面粗糙度(Ra)小于10nm含量增加至80wt%以上时,釉面光泽度大于110%。随釉浆粒度的减小,釉面粗糙度逐渐降低,D90介于4.0~7.5μm之间时,釉面粗糙度小于10nm。生坯施釉时釉浆浓度以1.5~1.6g·cm-3为宜,素坯施釉时釉浆浓度应控制在1.6~1.7g·cm-3,可以获得釉面质量较好的试样...................共47页

3、陶瓷釉面抗菌自洁薄膜制备工艺与性能研究

  对陶瓷釉面抗菌自洁薄膜的制备工艺和性能进行了研究。文章使用胶溶法制备稳定的载银纳米二氧化钛水溶胶,以溶胶的Zeta电位、透过率及粒径分布为主要表征指标,着重考察溶胶pH值、胶体配制浓度、胶溶剂浓度、制胶温度及载银改性对其分散稳定性的影响,优化了制备工艺条件,并对其在陶瓷釉面基底上的镀膜效果以SEM和EDS进行了表征和测试。研究结果表明:当制胶水浴T=40~80℃,溶胶pH=1.2~2.0时,使用质量分数为5﹪的稀硝酸或质量分数为3﹪的稀盐酸胶溶按0.05~0.3mol/L配制的正钛酸前驱体,均能够制备出较稳定的纳米二氧化钛水溶胶;但使用硝酸胶溶...................共49页

4、低锆乳浊釉与其结构的研究

  硅酸锆是陶瓷釉中常用的乳浊剂,但其来源有限、价格昂贵、过多使用还会造成釉面缺陷及使产品产生辐射等不足,目前研制及使用少锆和不含锆的乳浊釉已是国内外陶瓷界的一个趋势。本文旨在少用或不用硅酸锆,通过调整磷灰石的添加量,制备了低锆或无锆的P-Zr、P-Zn及P-Li-Zn3个系列的复合乳浊釉。采用XRD、SEM等现代测试技术分析了样品的性能及微观结构,探讨了釉的乳浊机理及坯釉结合机理。坯体采用固体废弃物武汉市东湖淤泥、粉煤灰和硅灰石为原料,经1100℃烧成后,坯体呈玫瑰棕色,吸水率为7.24%、气孔率为15.82%、体积密度为2.19g.cm-3。热膨胀系数为4.67×10-6/℃,酸度系数为0.75。坯体的主晶相为针棒状的蓝晶石晶体(Al2SiO5)、颗粒状的石英晶体(SiO2)和块...................共52页

5、新型纳米金属光泽釉研究

  通过湿化学方法首先合成金属光泽剂CuMn2O4粉体,添加到基础釉中,制备纳米金属光泽釉。通过TG—DTA、XRD、FE—SEM、EPMA现代测试技术研究了CuMn2O4的合成工艺及金属光泽釉的制备工艺,探讨了金属光泽釉的呈色机理。 以CuSO4·5H2O、MnSO4·H2O为原料,采用共沉淀法合成CuMn2O4粉体的最佳工艺参数为:pH=10,反应温度为45℃,反应物浓度0.1g/mL,热处理温度850℃,样品主晶相为正CuMn2O4,属立方晶系,平均晶粒尺寸约120nm。研究表明,热处理温度的高低直接影响产物的结晶状况,随热处理温度的升高,CuMn2O4粉体的平均结晶度呈现先增大后减小的趋势,热处理温度为800℃时平均结晶度最大,为89.15%,晶粒尺寸约100nm。热处理温度850℃时平均结晶度为83.33%,晶...................共43页

6、陶瓷坯釉料配方优化与显微结构定量分析

  针对实际的陶瓷生产工艺中的制约陶瓷生产质量的两点关键性技术问题,从理论上提出相应的改进方案并在技术实现上加以改进,具体方案详述如下:第一,针对配方优化方面,利用最优化算法对陶瓷配方进行优化设计,将繁琐的传统手工计算交由计算机来处理,缩短产品设计周期,提高生产效率。在分析数值优化算法的基础上,针对陶瓷配方优化方法的特点,分别采用复合形法和遗传算法对陶瓷配方进行设计。通过两种算法的结果对比分析,发现标准遗传算法在计算后的结果不理想,与复合形法的结果相比还有一定的差距,因此重点对标准遗传算法进行了优化和...................共65页

7、利用花岗石废料制备陶瓷釉料研究

  石材从原料加工到成品,会产生大量的废弃物。花岗石在开采和切割加工过程中,同样会产生大量碎片和切割粉屑并作为废料丢弃,造成资源浪费。目前,艺术陶瓷和琉璃瓦所用的釉料,都是由多种天然原料(如石英、长石、石灰石等)加工?而成。由于釉料的矿源日益减少,...................共40页

8、超低温釉制备与烧成机理的研究

  设计了釉料配方和添加剂,成功制备出烧成温度低于800℃的优质釉面;用DSC-TG、XRD、SEM、拉曼光谱对样品的结构、微观形貌、形成过程等进行了表征,测试了釉面的物理性能,研究了超低温釉的低温烧成机理和最佳烧成制度,讨论了ZnO、Na2B4O7对釉料烧成温度的影响以及烧成制度对釉面质量的影响。结果表明,釉料配方中,B2O3:SiO2为1.367:1(质量比),ZnO含量为11.74%,釉料烧成温度在780℃左右,烧成后釉面平整光滑,光泽度高,透明性好,有较强的耐热性,胚釉断面有结合层生成。与原配方相比,始熔温度降低了500℃左右;熔融过程温宽增加

9、超细无机复合抗菌搪瓷的制备研究

  对搪瓷及抗菌搪瓷的发展现状作了简要介绍;对抗菌剂的分类、制备方法和抗菌机理以及抗菌剂引入搪瓷方法进行了阐述;并对抗菌制品的检测方法作了简要介绍。研究确定了超细无机复合抗菌粉体制备的适宜工艺条件,即在体系总液量一定,原料配比一定的情况下,搅拌速度为750r/min,分散剂用量为0.13g(1.0%),反应时间为40min,反应温度为98℃,煅烧过程中温度为750℃,时间为3 h。根据适宜工艺条件制得的超细抗菌粉体用激光粒度仪测得平均粒径为230nm左右,粒径均匀,分布较窄。抗菌粉体为非溶出性抗菌剂,此抗菌剂在浓度为100mg/L时,30min内对大肠杆菌...................共55页

10、低温快烧结晶釉的研制

  以缩短传统结晶釉的烧成周期、减少生产成本为主要目的,从配方、工艺方面着手,以氧化锌和二氧化硅为主要原料,通过添加萤石降低釉的粘度和用金红石型TiO2作成核剂研制出符合现代建筑陶瓷产品低温快烧要求的硅酸锌系结晶釉。通过不断调整釉料配方和工艺,同时引入品种,获得了制备结晶效果好、烧成温度低、烧成周期短的结晶釉的工艺方法。利用X射线衍射分析和偏光显微镜研究和分析了结晶釉的组成和显微结构,并确定本实验中釉中析出的主晶相为Zn2SiO4晶体。探讨了快烧结晶釉的析晶机理,分析了各组...................共50页

11、低温烧成乳浊釉的研究及乳浊机理探讨

  釉料配方中采用价格低廉的磷灰石取代或部分取代锆英石作为乳浊剂制备磷乳浊釉和磷锆复合乳浊釉。黄河泥沙质陶瓷坯体采用注浆成型法制备,1080~1180℃烧成。测试了样品的吸水率、气孔率、体积密度。采用现代测试手段XRD、SEM、EPMA对样品的晶相组成和微观结构进行了分析。结果表明,烧后坯体的主晶相为柱状的莫来石(A16Si2013)和颗粒状的石英晶体(Si02)。黄河泥沙质陶瓷坯体烧成后呈色较深,本文成功研制了一种可以遮盖坯体颜色的低温乳浊釉,研究了其最佳配方组成及合理的制备工艺,测试了典型样品的釉面的白度、显微硬度等性能。分析了釉层结构和性能,并探讨了釉层的乳浊机理和坯体与釉层的结合机理。其中较佳磷釉的...................共65页

12、多孔釉膜的制备及性能研究

  以石英砂、长石、石灰石、膨润土、硼砂和工业级氧化铝粉为原料,以可溶性淀粉为造孔剂,采用喷涂工艺涂膜,在高温下烧结,可得到表面光滑、机械强度高、孔径分布均匀的多孔釉膜。膜层厚度受喷涂时间、釉浆浓度的影响,膜孔径的大小受造孔剂种类、添加量、釉膜烧结温度、保温时间的影响。通过调节这些因素,即可制备出孔径可控的多孔釉膜。造孔剂的最大用量不能超过15%,否则造成釉膜表面出现大面积缺陷。用扫描电子...................共40页

13、防污功能陶瓷材料的制备与性能研究

  研究功能陶瓷对水的表面张力、接触角、溶解氧、乳液稳定性、植物种子发芽等的影响,测试了陶瓷表面油滴在水中的运动规律。研究结果表明:将稀土复合磷酸盐无机抗菌材料添加到陶瓷釉料中制备的陶瓷具有较好的防污功能;这种陶瓷与水接触后可使水分子活化、降低水的表面张力、减小水在陶瓷表面的接触角、提高乳液的稳定性,使得陶瓷表面具有防油污功能;经防污功能陶瓷处理后的水,还可...................共46页

14、高白釉的研制及性能研究

  以锆英石为乳浊剂,研制出烧成温度大于 1300℃。白度大于 80,符合国标的高温乳浊白釉。并借助于 OM、SEM、XRD等手段。系统研究了该釉的工艺条件和形成机理。结果表明:锆英石最佳引入量为9%~13%,SiO2:Al2O3值为7.32:1;釉层中主要晶体为硅酸锆和石英;影响釉面效果的主要因素有釉料组成、粒度、乳浊剂和熔剂的引入量、SiO2:Al2O3的比值、烧成制度等。...................共50页

15、一次烧成釉面砖坯釉配方设计及坯釉性能的研究

  系统分析了一次烧成釉面砖坯釉料配方的特点,通过合理选择原料,引入适合低温快烧的透辉石、硅灰石、瓷石等唐山本地原料,在配方中调整Si2O、Al2O3的含量以及他们与K2O、Na2O之间的数量关系,确定了一次烧成釉面砖坯釉配方的化学组成范围及最佳配方,在烧成中采用“阶梯式升温”与快、缓升温结合,升温过程中进行两次保温,对气体排出完全,避免出现针孔,保证釉料充分熔融,形成质量稳定的釉面起到了促进作用。通过对坯体配方热重曲线、差热曲线、胀缩曲线的测试分析,坯釉膨胀系数的测定,釉熔融温度等性能的测定,可看出坯体的烧失量小

先进陶瓷新型快速烧结技术总结
答:低温烧结新工艺CS则通过瞬时溶剂和高压,仅需120-300℃就能实现高效致密化,显著降低了能耗和对材料的限制。图3、4、5分别展示了FS和CS的原理与实际操作流程,它们以创新的方式挑战了传统的烧结技术,为陶瓷材料的制备提供了全新的视角。在陶瓷制备过程中,首先通过水溶液的润湿作用,促使颗粒表面的物质溶...

在陶瓷工艺上,怎样实现低温快烧
答:因此,低温烧成的陶瓷产品其关键在于开发与利用低温陶瓷原料,以保证实现低温快烧生产工艺。 应该说几十年来低温快烧工艺的研究促进了陶瓷节能工作的进展。目前各国陶瓷研究机构已成功筛选出许多种低温陶瓷原料及低温熔剂原料。现在已知可用作低温烧成坯体原料的常规陶瓷矿物原料有硅灰石、透辉石、透闪石、绢云母粘土、叶蜡...

自清洁陶瓷的烧成具体是?
答:3)在冷却带中、后期增设上、下冷风鼓人和热风抽出装置(如图5中所示),这既有利于截面温度均匀又利于实现快速烧成。5.2.4 快烧隧道窑对装窑方式、窑车台面结构及窑具的要求 关于料垛的码放,原则上应尽量减小料垛和窑顶、窑墙及窑车台面间所形成的外:履道与料垛中的内通道之比[7]。首先应...

低温快烧陶瓷的溶剂材料有哪些,
答:还可通过人为的方法、透明釉与乳浊釉建筑卫生陶瓷普遍使用乳浊釉料、一次烧成釉与二次烧成釉对于陶瓷企业来讲:一,以稳定色调质量、氧化锌和硅酸锆作为常用原料,源于我国古代的颜色釉、锰陶瓷的釉料种类繁多。此外还有结晶型无光釉。因此锶釉成为一种很好的无铅釉、色彩的缤纷.89二氧化硅、钒锆蓝等成色稳定的色釉,...

瓷砖的制作流程
答:在把瓷料淘洗出来、将其制作成坯泥之后,你就可以正式的开始制作工艺陶瓷了。现在一般常用的方法就是把制作出来的坯泥用泥条盘快轮旋制成你所想要构造的工艺陶瓷的造型。如果你所制作的是比较大型的工艺陶瓷,你需要把其分成两部分,分别进行拉坯的工作,然后再使用相应的泥把其连接成一个整体就可以了...

陶瓷熔块是什么?
答:1.锭可溶性的原料变为不可溶 2.使有毒性的原料变为没有毒性 3.减少釉烧时分解化合反应 4.作为助熔剂降低陶瓷的烧结温度,使陶瓷低温快速烧成 5.提高釉料质量,提高产品的性能。问题二:如何选择陶瓷熔块,其方法是什么 釉面砖所用的是中温熔块,而且有几种,有光锆白、有光透明、哑光熔块等。

震惊!低熔点玻璃粉烧结,最快只需10秒?点击内容查看真相
答:在陶瓷烧结领域,感应加热虽有一定的贡献,但容易引发趋肤效应,非铁磁性和绝缘陶瓷则需借助模具进行热量传递,高温烧结常常依赖于石墨等材料。微波烧结以其低能耗和强化扩散的优势,缩短了烧结时间,但其工业应用的深度研究仍是关键。冷烧工艺以成本低、节能著称,即使在200℃的低温下也能实现快速致密化。

如何降低85氧化铝陶瓷的烧结温度
答:例如某低温烧成(1500℃×2h)的高铝瓷配方如下(wt%);α-Al2O393、苏州土3、烧骨石2、CaCO31 5、BaCO30 5、外加ZrO2、CeO2、La2O32%。 三、采用特殊烧成工艺降低瓷体烧结温度 采用热压烧结工艺,在对坯体加热的同时进行加压,那么烧结不仅是通过扩散传质来完成,此时塑性流动起了重要作用,坯体的烧结温度将...

烧陶瓷的窑有哪些?
答:隧道窑快速烧成技术。隧道窑是一种气流作逆向水平流动的横焰式陶瓷加热设备,制品在隧道窑中要先后经过预热带、烧成带、急冷带、缓冷带及快冷带等过程(如图5)。为保证隧道窑各带中温度分布的均匀性,并使其烧成周期尽可能缩短,应首先在改进坯、釉料配方的基础上改进烧成方法,使窑炉断面呈低矮、...

选择陶瓷熔块方法是什么?
答:大大减少了烧成过程中的釉面反应温度和反应时间,有利于提高釉面质量,实现低温快烧工艺。作为助熔剂使用,能够很方便地调整基础白釉和色料的使用温度。陶瓷生产中熔块的主要作用如下:使可溶性的原料变为不可溶使有毒性的原料变为没有毒性减少釉烧时分解化合反应作为助熔剂降低陶瓷的烧结温度,使陶瓷低温快速...