多触点触摸屏属于哪一个类型的触摸屏?原理与普通触摸屏有什么不同? 触摸屏的主要类型

作者&投稿:姚米 (若有异议请与网页底部的电邮联系)
多点式触摸屏大部分是电容式,其他类型的也应该会有

多点式触摸屏
多重触控的任务可以分解为两个方面的工作,一是同时采集多点信号,二是对每路信号的意义进行判断,也就是所谓的手势识别。与只能接受单点输入的触摸技术相比,多重触控技术允许用户在多个地方同时触摸显示屏,以便能够对网页或图片进行伸缩和旋转等操作。苹果iPhone仅允许两个手指操作,所以又可以称作“双重触控”,而微软即将发售的Surface电脑则可对52个触摸点同时做出响应。
为了实现多点触控功能,多重触控屏与单点触摸屏采用了完全不同的结构。从屏幕的外部看,单点触摸屏只有很少几根信号线(一般为4Pin或者5Pin),而触多重触控屏有很多引线;从内部看,单点触摸屏的导电层只是一个平板,而多重触控屏则是平板上划分出许许多多相对独立的触控单元,每个触控单元通过独立的引线连接到外部电路,所有触控单元在板子上呈矩阵排列。这样,当用户的手指触摸到屏幕上的某个部位时,会从相应的检测线输出信号。手指移动到另一个部位时,又会从另外的检测线输出信号。
苹果公司为iPhone申请了两种多重触控面板的专利—自电容(self capacitance)型和互电容(mutual capacitance)型。从使用角度看,自电容和互电容型两种触摸屏并无本质上的区别,所不同的是它们的内在结构—互电容型触摸屏有相互隔离的驱动线和检测线,而自电容型触摸屏里只有一层透明电极。
我们已经知道,iPhone可以用2个手指头同时触摸,Surface则最多允许有52个触摸点。同样都是多重触摸屏,触摸点为什么不同呢?
大家知道,在围棋的棋盘上横竖各有19道线,最多可以放得下19×19=361个棋子。我们的问题与此相似,多重触摸屏上纵横交错的检测线有许许多多的交汇点,照理说每个交汇点都可以作为触摸点。仅从触摸屏方面来看,确实可以支持非常多的触摸点。实际能支持几个触摸点,最终还由DSP芯片以及软件来决定。
在对多路输入技术有所认识之后,下面我们再来谈谈手势识别的问题。手势是一种非语言的高效沟通方式,在电脑、手机中许多操作只需要一个简单的手势就足够了。然而,对于一些较为抽象和复杂的操作(如图片的伸缩和旋转),单点手势实现起来会比较困难。虽然通过应用程序(如Photoshop等)可以完成这些操作,但会给用户带来很多麻烦,而且效率极低。反过来说,借助于DSP芯片(或其它处理器)对多重触摸屏的输入信号进行处理和计算,使之具有手势识别的能力,就可以极大地简化操作者的动作,提高用户的效率。例如,你可以直接用手指绘制一条直线或者画一个圆,你还可以方便地浏览网页,观看图片等等。
与多路输入技术相比,手势识别已经算是一项十分成熟的技术了。在触摸板、写字板上很早以前就开始普及,联机手写体识别就是一个手势识别技术的典型应用。所以在多重触摸的基础上加上手势识别技术并没有遇到更多的障碍,而是水到渠成。

触摸屏的工作原理
为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。

触屏电脑屏幕和普通屏幕有什么不同?~

触摸屏的主要三大种类是:电阻技术触摸屏、 表面声波技术触摸屏、 电容技术触摸屏。 每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合, 关键就在于要懂得每一类触摸屏技术的工作原理和特点。
触摸屏技术原理介绍

A: 电阻技术触摸屏:

电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏, 这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面图有一层透明氧化金属 (ITO氧化铟,透明的导电电阻) 导电层,上面在盖有一层外表面硬化处理、光滑防擦的塑料层 、它的内表面也涂有一层ITO涂层 、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘 。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,控制器侦测到这一接触并计算出(X,Y )的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。

电阻屏自进入市场以来,就以稳定的质量, 可*的品质及环境的高度适应性占据了广大的市场。尤其在工控领域内,由于对其环境和条件的高要求,更显示出电阻屏的独特性, 使其产品在同类触摸产品中占有90%的市场量,已成为市场上的主流产品。它最大的特点是不怕油污,灰尘,水。

G-Touch最新的第四代电阻技术触摸屏与其他电阻屏产品不同之处在于:它以玻璃为基层板,使得透光率更高,反射折射率更适用于使用者 。同时,均匀涂布玻璃板底层的导电层把吸附在触摸屏上的静电粒子通过地线卸载掉,保证了触摸定位更准确 、更灵敏,彻底解除带电粒子过多引起的漂移现象、定位不准、反应速度缓慢、使它寿命更长(物理测定单点连续使用可达15年以上),并具备了免维护的能力,防刮伤度也得到极大提高。确是是一种品质卓越而价格合理的产品。

四线电阻屏特点:
■ 高解析度,高速传输反应。
■ 表面硬度处理,减少擦伤、刮伤及防化学处理。
■ 具有光面及雾面处理。
■ 一次校正,稳定性高,永不漂移。
四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向, 一个水平方向。总共需四根电缆。
五线电阻屏特点:
■ 解析度高,高速传输反应。
■ 表面硬度,减少擦伤、刮伤及访化学处理。
■ 同点接触3000万次尚可使用。
■ 导电玻璃为基材的介质。
■ 一次校正,稳定性高,永不漂移。
五线电阻模拟量技术把两个方向的电压通过电阻网络加在*里的那层金属层上 ,*既检测电压又检测电流的的方法测得触摸点的位置,而外层ITO仅当作导体层,共需五根电缆。

B:表面声波技术触摸屏

表面声波技术是利用声波在物体的表面进行传输,当有物体触摸到表面时,阻碍声波的传输,换能器侦测到这个变化,反映给计算机,进而进行鼠标的模拟。
表面声波屏特点:
■ 清晰度较高,透光率好。
■ 高度耐久,抗刮伤性良好。
■ 一次校正不漂移。
■ 反应灵敏。
■ 适合于办公室、机关单位及环境比较清洁的场所。
表面声波屏需要经常维护,因为灰尘, 油污甚至饮料的液体沾污在屏的表面,都会阻塞触摸屏表面的导波槽,使波不能正常发射,或使波形改变而控制器无法正常识别, 从而影响触摸屏的正常使用,用户需严格注意环境卫生。必须经常擦抹屏的表面以保持屏面的光洁,并定期作一次全面彻底擦除。

C:电容技术触摸屏:

利用人体的电流感应进行工作 。用户触摸屏幕时 ,由于人体电场,用户和触摸屏表面形成以一个耦合电容, 对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比, 控制器通过对这四个电流比例的精确计算,得出触摸点的位置。
电容触摸屏的特点:
■ 对大多数的环境污染物有抗力。
■ 人体成为线路的一部分,因而漂移现象比较严重。
■ 带手套不起作用。
■ 需经常校准。
■ 不适用于金属机柜。
■ 当外界有电感和磁感的时候,会使触摸屏失灵。

从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质,把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解哪种触摸屏适用于哪种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下:四线电阻屏四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。总共需四根电缆。特点:高解析度,高速传输反应。 表面硬度处理,减少擦伤、刮伤及防化学处理。具有光面及雾面处理。一次校正,稳定性高,永不漂移。五线电阻屏五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。五线电阻触摸屏内层ITO需四条引线,外层只作导体仅仅一条,触摸屏得引出线共有5条。特点:解析度高,高速传输反应。表面硬度高,减少擦伤、刮伤及防化学处理。同点接触3000万次尚可使用。导电玻璃为基材的介质。一次校正,稳定性高,永不漂移。五线电阻触摸屏有高价位和对环境要求高的缺点。电阻式触摸屏这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。所以电阻触摸屏可用较硬物体操作。 电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:ITO,氧化铟,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。电阻屏的局限不管是四线电阻触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,不怕灰尘和水汽,它可以用任何物体来触摸,可以用来写字画画,比较适合工业控制领域及办公室内有限人的使用。电阻触摸屏共同的缺点是因为复合薄膜的外层采用塑胶材料,不知道的人太用力或使用锐器触摸可能划伤整个触摸屏而导致报废。不过,在限度之内,划伤只会伤及外导电层,外导电层的划伤对于五线电阻触摸屏来说没有关系,而对四线电阻触摸屏来说是致命的。性能特点1、它们都是一种对外界完全隔离的工作环境,不怕灰尘、水汽和油污;2、可以用任何物体来触摸,可以用来写字画画,这是它们比较大的优势;3、电阻触摸屏的精度只取决于A/D转换的精度,因此都能轻松达到4096*4096·比较而言,五线电阻比四线电阻在保证分辨率精度上还要优越,但是成本代价大,因此售价非常高。电容式触摸屏1、电容技术触摸屏是利用人体的电流感应进行工作的。电容式触摸屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO,最外层是一薄层矽土玻璃保护层,夹层ITO涂层作为工作面,四个角上引出四个电极,内层ITO为屏蔽层以保证良好的工作环境。当手指触摸在金属层上时,由于人体电场,用户和触摸屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。2、电容触摸屏的缺陷电容触摸屏的透光率和清晰度优于四线电阻屏,当然还不能和表面声波屏和五线电阻屏相比。电容屏反光严重,而且,电容技术的四层复合触摸屏对各波长光的透光率不均匀,存在色彩失真的问题,由于光线在各层间的反射,还造成图像字符的模糊。电容屏在原理上把人体当作一个电容器元件的一个电极使用,当有导体靠近与夹层ITO工作面之间耦合出足够量容值的电容时,流走的电流就足够引起电容屏的误动作。我们知道,电容值虽然与极间距离成反比,却与相对面积成正比,并且还与介质的的绝缘系数有关。因此,当较大面积的手掌或手持的导体物靠近电容屏而不是触摸时就能引起电容屏的误动作,在潮湿的天气,这种情况尤为严重,手扶住显示器、手掌靠近显示器7厘米以内或身体靠近显示器15厘米以内就能引起电容屏的误动作。电容屏的另一个缺点用戴手套的手或手持不导电的物体触摸时没有反应,这是因为增加了更为绝缘的介质。 电容屏更主要的缺点是漂移:当环境温度、湿度改变时,环境电场发生改变时,都会引起电容屏的漂移,造成不准确。例如:开机后显示器温度上升会造成漂移:用户触摸屏幕的同时另一只手或身体一侧靠近显示器会漂移;电容触摸屏附近较大的物体搬移后回漂移,触摸时如果有人围过来观看也会引起漂移;电容屏的漂移原因属于技术上的先天不足,环境电势面(包括用户的身体)虽然与电容触摸屏离得较远,却比手指头面积大的多,他们直接影响了触摸位置的测定。此外,理论上许多应该线性的关系实际上却是非线性,如:体重不同或者手指湿润程度不同的人吸走的总电流量是不同的,而总电流量的变化和四个分电流量的变化是非线性的关系,电容触摸屏采用的这种四个角的自定义极坐标系还没有坐标上的原点,漂移后控制器不能察觉和恢复,而且,4个A/D完成后,由四个分流量的值到触摸点在直角坐标系上的X、Y坐标值的计算过程复杂。由于没有原点,电容屏的漂移是累积的,在工作现场也经常需要校准。电容触摸屏最外面的矽土保护玻璃防刮擦性很好,但是怕指甲或硬物的敲击,敲出一个小洞就会伤及夹层ITO,不管是伤及夹层ITO还是安装运输过程中伤及内表面ITO层,电容屏就不能正常工作了。压电式触摸屏电阻式设计简单,成本低,但电阻式触控较受制于其物理局限性,如透光率较低,高线数的大侦测面积造成处理器负担,其应用特性使之易老化从而影响使用寿命。电容式触控支持多点触控功能,拥有更高的透光率、更低的整体功耗,其接触面硬度高,无需按压,使用寿命较长,但精准度不足,不支持手写笔操控。于是衍生了压电式触摸屏。压电式触控技术介于电阻式与电容式触控技术之间。压电式传感器的触控屏幕同电容式触控屏一样支持多点触控,而且支持任何物体触控,不像电容屏只支持类皮肤的材质触控。这样,压电式触控屏幕可以同时具有电容屏幕的多点触控触感,又具有电阻屏的精准。压电式触控在耗电特性上更接近电容式触控特性,即没有触摸的动作,就不产生耗电,而电阻式则时刻产生耗电。在接口支持上,压电式触控也同样支持串口、I2C和USB接口。从工艺成本上看,电阻式触控制程转到压电式触控制程需要变更生产线设备,而同电容式的ITO和掩模结合的制程相比,压电式触控制程成本约在其80-90%之间。压电触摸屏的工作原理相当于TFT,制造工艺部分像电容式触摸屏,物理结构又像电阻式触摸屏,是三种成熟技术的揉和。所以采用新技术的压电式触摸屏集合并增强了电阻式和电容式的优点,又避免了二者的缺点。压电触摸屏一般为硬塑料平板(或有机玻璃)底材多层复合膜,硬塑料平板(或有机玻璃)作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面经过硬化处理、光滑防刮的塑料层,它的表面也涂有一层透明的导电层,在两层导电层之间有许多细小的透明隔离点。屏体的透光度略低于玻璃。压电式触摸屏的代表作是智器Ten(即T10),压电式IPS硬屏,近乎达到了iPad同级的显示效果和触控体验,同时成本更低,表现非常不错。红外线式触摸屏早期观念上,红外触摸屏存在分辨率低、触摸方式受限制和易受环境干扰而误动作等技术上的局限,因而一度淡出过市场。此后第二代红外屏部分解决了抗光干扰的问题,第三代和第四代在提升分辨率和稳定性能上亦有所改进,但都没有在关键指标或综合性能上有质的飞跃。但是,了解触摸屏技术的人都知道,红外触摸屏不受电流、电压和静电干扰,适宜恶劣的环境条件,红外线技术是触摸屏产品最终的发展趋势。采用声学和其它材料学技术的触屏都有其难以逾越的屏障,如单一传感器的受损、老化,触摸界面怕受污染、破坏性使用,维护繁杂等等问题。红外线触摸屏只要真正实现了高稳定性能和高分辨率,必将替代其它技术产品而成为触摸屏市场主流。过去的红外触摸屏的分辨率由框架中的红外对管数目决定,因此分辨率较低,市场上主要国内产品为32x32、40X32,另外还有说红外屏对光照环境因素比较敏感,在光照变化较大时会误判甚至死机。这些正是国外非红外触摸屏的国内代理商销售宣传的红外屏的弱点。而最新的技术第五代红外屏的分辨率取决于红外对管数目、扫描频率以及差值算法,分辨率已经达到了1000X720,至于说红外屏在光照条件下不稳定,从第二代红外触摸屏开始,就已经较好的克服了抗光干扰这个弱点。第五代红外线触摸屏是全新一代的智能技术产品,它实现了1000*720高分辨率、多层次自调节和自恢复的硬件适应能力和高度智能化的判别识别,可长时间在各种恶劣环境下任意使用。并且可针对用户定制扩充功能,如网络控制、声感应、人体接近感应、用户软件加密保护、红外数据传输等。原来媒体宣传的红外触摸屏另外一个主要缺点是抗暴性差,其实红外屏完全可以选用任何客户认为满意的防暴玻璃而不会增加太多的成本和影响使用性能,这是其他的触摸屏所无法效仿的。表面声波触摸屏1、表面声波表面声波,超声波的一种,在介质(例如玻璃或金属等刚性材料)表面浅层传播的机械能量波。通过楔形三角基座(根据表面波的波长严格设计),可以做到定向、小角度的表面声波能量发射。表面声波性能稳定、易于分析,并且在横波传递过程中具有非常尖锐的频率特性,2013年间在无损探伤、造影和退波器方向上应用发展很快,表面声波相关的理论研究、半导体材料、声导材料、检测技术等技术都已经相当成熟。表面声波触摸屏的触摸屏部分可以是一块平面、球面或是柱面的玻璃平板,安装在CRT、LED、LCD或是等离子显示器屏幕的前面。玻璃屏的左上角和右下角各固定了竖直和水平方向的超声波发射换能器,右上角则固定了两个相应的超声波接收换能器。玻璃屏的四个周边则刻有45°角由疏到密间隔非常精密的反射条纹。2、表面声波触摸屏工作原理以右下角的X-轴发射换能器为例:发射换能器把控制器通过触摸屏电缆送来的电信号转化为声波能量向左方表面传递,然后由玻璃板下边的一组精密反射条纹把声波能量反射成向上的均匀面传递,声波能量经过屏体表面,再由上边的反射条纹聚成向右的线传播给X-轴的接收换能器,接收换能器将返回的表面声波能量变为电信号。当发射换能器发射一个窄脉冲后,声波能量历经不同途径到达接收换能器,走最右边的最早到达,走最左边的最晚到达,早到达的和晚到达的这些声波能量叠加成一个较宽的波形信号,不难看出,接收信号集合了所有在X轴方向历经长短不同路径回归的声波能量,它们在Y轴走过的路程是相同的,但在X轴上,最远的比最近的多走了两倍X轴最大距离。因此这个波形信号的时间轴反映各原始波形叠加前的位置,也就是X轴坐标。发射信号与接收信号波形在没有触摸的时候,接收信号的波形与参照波形完全一样。当手指或其它能够吸收或阻挡声波能量的物体触摸屏幕时,X轴途经手指部位向上走的声波能量被部分吸收,反应在接收波形上即某一时刻位置上波形有一个衰减缺口。接收波形对应手指挡住部位信号衰减了一个缺口,计算缺口位置即得触摸坐标 控制器分析到接收信号的衰减并由缺口的位置判定X坐标。之后Y轴同样的过程判定出触摸点的Y坐标。除了一般触摸屏都能响应的X、Y坐标外,表面声波触摸屏还响应第三轴Z轴坐标,也就是能感知用户触摸压力大小值。其原理是由接收信号衰减处的衰减量计算得到。三轴一旦确定,控制器就把它们传给主机。3、表面声波触摸屏特点清晰度较高,透光率好。高度耐久,抗刮伤性良好(相对于电阻、电容等有表面度膜)。反应灵敏。不受温度、湿度等环境因素影响,分辨率高,寿命长(维护良好情况下5000万次);透光率高(92%),能保持清晰透亮的图像质量;没有漂移,只需安装时一次校正;有第三轴(即压力轴)响应,在公共场所使用较多。表面声波屏需要经常维护,因为灰尘,油污甚至饮料的液体沾污在屏的表面,都会阻塞触摸屏表面的导波槽,使波不能正常发射,或使波形改变而控制器无法正常识别,从而影响触摸屏的正常使用,用户需严格注意环境卫生。必须经常擦抹屏的表面以保持屏面的光洁,并定期作一次全面彻底擦除。4.表面声波触摸屏问题解答(1)表面声波屏触摸不准 ·请运行触摸屏校准程序.(开始--设置--控制面板--声波屏图标---Caliberate按钮)。  · 如果是新购进的触屏,请试着将驱动删掉,然后将主机断电5秒钟开机重新装驱动。  · 如果上面的办法不行,则可能是声波屏在运输过程中的反射条纹受到轻微破坏,无法完全修复。  · 如果声波屏在使用一段时间后不准,则可能是屏四周的反射条纹或换能器上面被灰尘覆盖,如果您使用的是我公司LT系列机型,您需打开机柜后显示器后面的门,将固定显示器的左右四个螺姆及向前顶显示器的螺栓松开,看前面显示屏与机柜前面板间隙足够打哈哈和即可,或将显示器拆下来放在泡沫或软垫子处,然后用软布喷上电脑清洗剂擦拭屏四周。  · 触摸屏表面有水滴或其它软的东西粘在表面,触摸屏误判有手触摸造成表面声波屏不准,将其擦拭即可。  (2)表面声波屏不能校准  · 如果您使用的是品牌机,有些品牌机内可预装MOUSE驱动,会与触摸屏驱动有冲突,将其卸载掉即可。  · 有可能是在主机启动装载触摸屏驱动程序之前,触摸屏控制卡接收到操作信号,请断电重新启动计算机并重新校准。  · 可能是触摸屏驱动安装异常,请删掉驱动重新安装(控制面板/添加删除程序)。  · 有可能是声波屏在使用一段时间后,屏四周的反射条纹上面被大量的灰尘覆盖导致不能进行校准或触摸屏位置不准确,您需要在我公司技术人员指导下或将显示器部件拆下交予经销商清洗屏体。  (3)表面声波屏触摸无响应  · 可能是触摸屏的连线中,其中一个连接主机键盘口的连线(从键盘口取5伏触摸屏工作电压)没有连接,请检查连线。  · 可能是触摸屏的驱动程序安装过程中所选择的串口号和触摸屏实际连接的的串口号没有对应起来,请卸载驱动重新安装。  · 可能是主机为国产原装机,所装的操作系统为OEM版本,被厂家调整过,造成串口通讯的非标准性,与触摸屏驱动不兼容,如果可行 请格式化硬盘,安装系统后驱动触摸屏。  · 有可能是触摸屏驱动程序版本过低,请安装最新的驱动程序。  · 主机中是否有设备与串口资源冲突检查各硬件设备并调整.例如某些网卡安装后默认的IRQ为3,与COM2的IRQ冲突,此时应将网卡的IRQ改用空闲未用的IRQ(4)表面声波屏响应时间很长  · 有可能是触摸屏上粘有移动的水滴,触摸屏响应水滴的操作,请用一块干的软布进行擦拭。  · 有可能是主机档次太低,时钟频率过低,请更换主机。  (5)表面声波屏局部触摸无反应  · 有可能是触摸屏反射条纹局部被覆盖,请用一块干的软布进行擦拭。  · 有可能是触摸屏反射条纹局部被硬物刮掉,将无法修复。

多触点触摸屏属于哪一个类型的触摸屏?原理与普通触摸屏有什么不同?
答:苹果公司为iPhone申请了两种多重触控面板的专利—自电容(self capacitance)型和互电容(mutual capacitance)型。从使用角度看,自电容和互电容型两种触摸屏并无本质上的区别,所不同的是它们的内在结构—互电容型触摸屏有相互隔离的驱动线和检测线,而自电容型触摸屏里只有一层透明电极。我们已经知道,iPhon...

电容触5点触摸操控
答:电容式触摸屏电容式触摸屏是在玻璃表面贴上一层透明的特殊金属导电物质。当手指触摸在金属层上时,触点的电容就会发生变化,使得与之相连的振荡器频率发生变化,通过测量频率变化可以确定触摸位置获得信息。️多点触控多点触控技术,能构成一个触摸屏,如:屏幕、桌面、墙壁或触控板,能够同时接受来自屏幕上多个点的...

手机屏幕的两大巨头:电容式触摸屏和电阻式触摸屏
答:电容式触摸屏和电阻式触摸屏是目前手机屏幕上常见的两种触摸屏。本文将从原理、特点和适用场景等方面进行介绍,帮助读者更好地了解这两种触摸屏。电容式触摸屏电容式触摸屏是在玻璃表面贴上一层特殊的透明金属导电物质,手指一碰,触点的电容就会发生变化,让与之相连的振荡器频率产生变化,进而确定触摸位置。它利用...

电容式触摸屏和电阻式触摸屏的区别
答:电容式触摸屏是在玻璃表面贴上一层透明的特殊金属导电物质。当手指触摸在金属层上时,触点的电容就会发生变化,使得与之相连的振荡器频率发生变化,通过测量频率变化可以确定触摸位置获得信息。触摸位置计算电容触摸屏的四边均镀上狭长的电极,在导电体内形成一个低电压交流电场。在触摸屏幕时,由于人体电场,手指与导体...

电容式触摸屏:工作原理与优势
答:当你触摸屏幕时,由于人体电场的影响,手指与导体层之间会形成一个耦合电容。四边电极发出的电流会流向触点,而电流的强弱与手指到电极的距离成正比。触摸屏幕后的控制器会计算电流的比例和强弱,从而准确判断出触摸点的位置。美观大方电容式触摸屏的双玻璃设计不仅美观大方,更重要的是它能有效防止外部环境因素对触摸屏...

触摸屏显示器有哪些类型
答:触摸屏显示器有哪些类型1、电容触摸电容式触摸屏把透明的金属层涂在玻璃板上作为导电体,在触摸屏四边有狭长的电极,在导电体内形成一个低电压交流电场。当手指触摸在金属层上时,当有导电物体触碰时,就会改变触点的电容,四边电极发出的电流会流向触点,控制器通过电流可以确定触摸的位置信息。由于电容随...

电容式触摸屏的工作原理
答:电容式触摸屏的工作原理当手指触摸在金属层上时,由于人体电场,用户和触摸屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分别从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算...

目前手机常用触摸屏类型及原理?
答:二、触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式电容感应式红外线式以及表面声波式每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点下面对上述的各种类型的触摸屏进行简要介绍一下...

电阻触摸屏:给你不一样的触控体验
答:电阻触摸屏的屏体部分,由玻璃或有机玻璃作为基层,表面涂有一层透明的导电层(ITO,氧化铟)。当手指接触屏幕时,两层ITO导电层出现一个接触点,从而使得控制器侦测到这个接通并进行A/D转换。通过与5V电压的比较,我们就能得到触摸点的坐标位置。五线电阻触摸屏五线电阻触摸屏的A面是导电玻璃,不仅寿命长,而且透光率...

触摸屏是什么
答:触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。nbsp;主要类型 从技术原理来区别触摸屏,可分...