水热蚀变 软弱岩体与隧道围岩大变形问题

作者&投稿:允胀 (若有异议请与网页底部的电邮联系)

腾冲水热活动分布地区,都有水热蚀变矿物的出现,尤其是在热沸泉出露较多的地段更为特征。热海热田区内出露的碱长石花岗岩、玄武岩类,以及沉积岩类,岩石矿物种类繁多,在强烈水热流体活动作用下,水热蚀变矿物纷呈多彩,是研究现代水热活动过程的典型区域。

本节侧重论述热海热田区的水热蚀变研究成果,并讨论在朗浦寨热水塘地段、瑞滇热田、石墙热田、巴腊掌热田等区的工作。在上述热田区内除进行地质剖面研究外,并采集60多件水热蚀变样品,在室内通过X射线衍射(XRD)、红外吸收光谱(IR)、透射电镜分析(SEM)、热分析(DTA、TG)以及化学分析等方法,进行了矿物学研究。

一、水热蚀变矿物

在本区水热活动的分布区,通过上述方法已确定的矿物种类和矿物有;氧化硅矿物:非晶质二氧化硅(本节以下均称为硅胶)、玉髓、蛋白石、方英石、石英;硫酸盐矿物:明矾石、铁明矾、黄钾铁矾、毛矾石、无水芒硝、斜钠明矾;碳酸盐矿物:方解石、文石、天然碱;卤化物矿物:石盐;粘土矿物:高岭石、迪开石、埃洛石、绢云母、蒙脱石、绿泥石、云母—蒙皂石不规则间层矿物;硫化物:黄铁矿、白铁矿;自然硫。

此外,前人在眼镜泉中发现有沥青铀矿、铀石、黄铜矿、辉银矿、赤铁矿;在攀枝花硝塘热泉发现方沸石、菱沸石等矿物。对腾冲地区的水热蚀变矿物,择要论述如下:

硅胶

硅胶为非晶质二氧化硅。在透射电镜和扫描电镜下呈浑圆球体或串珠状连生体,球粒直径变化范围为0.18~2μm,一般为1μm左右。老硅华中的硅胶多半已向形态不规则的玉髓和石英转变。硅胶的X射线衍射谱为一连续的弥散谱线(图4-2-A),硫磺塘老滚锅老硅华中叠加有少量石英的反射(图4-2-B)。红外吸收谱图上出现1099、795和473cm-1四次配位硅的典型特征谱带以及947cm-1的弱谱带。3450cm-1的宽吸收谱带由水的OH伸缩振动引起(图4-3)。另外,硫磺塘老滚锅的硅华在800cm-1处呈弱分裂的谱带,是玉髓的吸收特征,这是硅胶或蛋白石向玉髓转变的一个证据(图4-2-B)。

本区现代热泉沉淀的微米级大小的非晶质状硅胶,是本区热泉系统新硅华的主要组成矿物。硫磺塘大滚锅热泉正日夜不停地沉淀出硅胶球粒。硅胶失水老化而向蛋白石转变。蛋白石是准稳定物质,其出现意味着流体温度要比形成玉髓或石英的低,随着时间的推移,而转变为隐晶质的玉髓。因此,本区时代略老的老硅华,其矿物组分除硅胶以外,较多出现玉髓和石英(参见图4-2-B)。

水热流体中的SiO2,由非晶质的凝胶,脱水、缩小体积,逐渐晶化为显晶质石英的转化系列可概括为以下过程:

中国地球化学场及其与成矿关系

图4-2 硅华的X射线衍射图

A—硅胶,硫磺塘,样品号D-173;B—硅胶+石英等,硫磺塘老滚锅,样品号D-162;C—蛋白石+石英等,鼓鸣泉,样品号D-194;D—石英,眼镜泉,样品号D-193测试条件:CuKα辐射,电压30世纪,电流30mA

测试单位:天津地质矿产研究所

腾冲地区的硅胶矿物,以在硅质泉华中出现最多,在热海热田内的蚀变碱长花岗岩、水热爆炸角砾岩的胶结物中也有所发现。

α方英石

为标准的高温相矿物,发现于硫磺塘地段的蚀变碱长花岗岩岩石中。在X射线衍射图中,以4.07,2.46Å等特征反射,与共生的钾明矾石、高岭石、硅胶和石英相区别。

高岭石

高岭石是花岗岩遭受水热蚀变高岭石化阶段的产物,在近地表的浅成低温强酸性淋滤环境条件下形成。热海热田区内的高岭石,为我国迄今发现的有序度最高的高岭石,其结晶度指数Hc=1.67,主要化学成分与SiO2/Al2O3摩尔比,均与高岭石矿物理论值相近。

高岭石为1:1型二八面体层状硅酸盐矿物。其结构有序程度变化很大,从高度有序向无序高岭石的转变,主要是延b轴方向出现±nb/3(n≠3)的晶层位移。矿物由三斜晶系的1Tc型变为单斜晶系的1Md型。

图4-3 硅华的红外吸收光谱图

(样品号同图4-2)

测试单位:石油勘探开发研究院

目前主要使用X射线衍射(XRD)、红外吸收光谱(IR)、透射电镜(TEM)等方法定性判断高岭石的有序度。定量估计的方法很多,但至今尚沿用Hinckley(1963)提出的方法,称Hinckley结晶度指数(以下用Hc表示)。它实际上表征XRD图上靠近的021、111衍射峰之清晰度及其强度比值。结晶度指数愈大,表明有序度愈高。我国自20世纪80年代以来,已发现江苏苏州阳山、广东茂名和河北宣化沙岭子等高岭土矿床中的高岭石(Hc分别为1.10;1.3~1.4和1.40)以及陕西略阳白水江硬质粘土中的高岭石(Hc为1.35)的有序度均较高。

作者对高岭石矿物进行了XRD、IR和TEM等项测试研究。高岭石化花岗岩<2μm粒级的样品在XRD图上出现三斜晶系高岭石的所有反射(图4-4)。衍射峰强、锐而对称。(

)强度大大超过(020)。(

)和(

)双生线已分裂开。计算得出Hc=1.67,大大优于我国迄今发现的上述各产地的有序高岭石,且可与Brindley(1980)报道的美国艾奥瓦州Keokuk晶洞有序高岭石(根据文献XRD图计算,Hc为1.65)相媲美。

图4-4 高岭石的X射线衍射图

测试条件:CuKα辐射;35kV,30mA;扫描速度4°(2θ)/min

测试单位:天津地质矿产研究所

图4-5 高岭石的红外吸收光谱图

测试单位:石油勘探开发研究院

在红外吸收光谱图(图4-5)上,各吸收峰强度大,分裂好。属于羟基伸缩振动的高频区(4000~3000cm-1),出现四个分裂清晰的吸收峰,显示出有序高岭石的特征。因样品中微量绢云母的存在,使3696cm-1峰强度与3620cm-1峰强度的比值受到影响。属于Si-O伸缩振动的中频区(1200~1000cm-1)有四个尖锐的吸收峰。在透射电镜下,高岭石晶体呈现发育完善的自形成度高的假六方(板)片状,晶体大小和晶体厚度都较均匀,粒度大多小于2μm。因此,红外吸收特点和结晶形貌分析也都表明矿物具有高度有序。此外,在该区断裂带外围、瑞滇热田等水热区也发现有一般有序或较无序的高岭石,多与伊利石、蒙脱石或绿泥石等粘土矿物共生。

迪开石

为高温地热环境出现的强水解型蚀变矿物,具有六方叠层状自形晶的特点。在热海热田区域,常与有序高岭石或伊利石—蒙皂石间层矿物共生。X射线衍射谱图上2θ19°~35°间展现迪开石的特征反射:3.97,3.80,3.43Å以及3.09、293Å等。红外吸收谱上,以高频区强度依次递增的3696,3652和3620cm-1附近的三个特征吸收峰与高岭石相区别。

埃洛石

腾冲水热活动区内,已发现的埃洛石,以7Å型最为广泛,次为10Å型和7Å~10Å的过渡型。全部由7Å埃洛石组成的粘土,在本区玄武岩、安山岩<2μm粒级的风化产物中发育。白色粘土细脉<2μm粒级中有10Å和7Å两种水化型埃洛石的出现,由于10Å埃洛石层间水的脱失,在衍射图上出现了7Å埃洛石的较强底面反射001(7.30Å)。10Å埃洛石多呈短细管状晶形,长一般<1μm,管径约0.06~0.02μm,管体多已展开或破裂形若长条状,紧密丛生聚集时呈现绒球状集合体。由衍射谱图及电镜可观察到10Å管状埃洛石➝7Å破裂的管状埃洛石➝六边形鳞片状高岭石(无序)➝厚板状高岭石(有序)的转化系列。

绢云母

水热活动区内绢云母,有1M多型、2M1多型和2M1+1M混合型。X衍射研究表明,区内存在两种矿物相:一为双层较有序的单斜相绢云母(白云母),在区内较为发育,为特征水热蚀变矿物之一;另一类为单层较无序的单斜相伊利石(水白云母),其多以混入物形式出现,水热条件下,局部蒙脱石化,并可向伊利石—蒙皂石间层矿物过渡。

硫磺塘地段的蚀变岩石中,绢云母呈结晶良好的板条状自形晶出现,时与不规则薄片状绢云母共生。板条状绢云母晶体的自晶生长,基本上取[110]、

和[100]方向而定向。

I/S间层粘土矿物

间层粘土矿物,是指由几种不同的层状硅酸盐单元晶层,以不同比例、不同交替顺序,沿C轴平行叠置组成的特殊结构类型的粘土矿物。依其叠置的规则程度,可分为规则、不规则和具有分凝作用的三类。

表征伊利石—蒙皂石间层矿物特征因素,主要为间层比和有序度两个方面。前者指I/S间层矿物中可膨胀的蒙皂石晶层的百分含量;后者为矿物主要化学组分与理论值的差异状况。

伊利石—蒙皂石间层矿物的间层比,是矿物种类、水热流体性质与活动强度诸因素的变化函数。Inoue等(1987)的研究指出,间层比>50%的多为无序间层;<50%的多为有序间层。

伊利石—蒙皂石间层矿物,在腾冲水热活动区内分布广泛,在热海热田澡塘河地段特别发育,常与高岭石、石英、明矾石一起构成典型的矿物共生组合。通过X射线衍射和分析电子显微术研究,区内硫磺塘、澡塘河地段的I/S间层矿物多为不规则类型,其间层比S=28%~32%,属于有序间层,这类间层比的I/S间层矿物,是伊利石向蒙皂石转变初期的有序化间层,仅含少量的膨胀晶层,矿物外貌基本上保持了伊利石的形态特点,透射电镜下呈现不规则片状和轻微的卷曲。随着间层比的增加,I/S不规则间层的无序性增加,矿物颗粒边缘模糊、卷曲、厚度减薄,而向蒙皂石转化。

X射线能谱分析表明,I/S间层矿物主要化学成分为Si、Al、K,含少量Mg、Fe。SiO2/Al2O3克分子比值略高于白云母的2,但低于蒙脱石的4。

蒙脱石

水热活动区内的蒙脱石,常以混入物的形式分布于蚀变花岗岩类的水热蚀变矿物中,并与高岭石、绢云母、石英、绿泥石共生。其产出一般远离水热活动强烈地带,为中性至弱碱性介质环境中的蚀变产物。

斜钠明矾

斜钠明矾属于含水无附加阴离子的硫酸盐类矿物。自然界中少见,但腾冲地热区澡塘河沿岸现代泉华和龙陵县巴腊掌温泉泉华中多有发现。

无色或浅灰白色,半透明,细粒土状集合体。易溶于水,味微涩。在扫描电镜下可观察到结晶完善的长柱状和薄板状晶体,后者直径约0.1~2μm不等。因此,由矿物结晶外貌可反映出结构(NaO6)八面体和(SO4)四面体形成的平行C轴的链状结构之特点。红外吸收谱图上1093和1148cm-1强的吸收谱带归属于SO4基团的S—O伸缩振动,较弱的606cm-1吸收带为S—O弯曲振动引起。

黄钾铁矾

泉华中黄钾铁矾多半与高岭石、蒙脱石共生。纯矿物产出者少见。主要通过分析电子显微术(AEM)和X 射线衍射技术发现。透射电镜下,黄钾铁矾晶体细小,呈直径仅0.7μm的假立方体状。其元素分析值与矿物理论化学组成基本吻合,并含有其它元素杂质。X射线衍射分析,以其5.95、5.75、3.11、3.08Å等特征反射与伴生的粘土矿物相区别。在红外吸收谱图上,由叠加在高岭石谱图上但属于SO4基团振动引起的1087,697和634cm-1吸收谱带,属于黄钾铁矾的吸收,而且也具有与高岭石共有的反映OH基团伸振缩动引起的3385cm-1吸收谱带。

铁明矾

与斜钠明矾同属于含水、无附加阴离子的硫酸盐类矿物。以纯矿物产于热泉附近沉淀物中。肉眼可见矿物晶体呈细长针状,集合体呈毛发状或纤维状。浅黄褐色,半透明。易溶于水,久置室内潮解,味略苦。扫描电镜下结晶良好,呈细小柱状、棒状。红外吸收谱图上除了1106和1065cm-1二个分裂最强的吸收带、698和595cm-1两个中强吸收带以外,还有由H2O引起的3387cm-1宽大的吸收带。

毛矾石

白色,粉末状,集合体为板状,半透明。易溶于水。单矿物晶体呈柱状、纤维状或板片状。纤维状单晶的X射线能谱分析表明矿物主要由Al、S组成,Fe3+部分代替Al3+,毛矾石主要特征反射为13.58Å、4.50Å、4.40Å、3.97Å、3.67Å等。毛矾石在硫磺塘、瑞滇等水热区广泛分布,常与氧化硅矿物共生。

天然碱

产于瑞滇等地热田的泉华中。以细长针状集合体被膜状盐华覆盖于热泉附近岩石表面或以细脉状产于岩石裂隙中,并与少量石盐共生呈集合体。浅黄色,半透明,易溶于水。经X射线衍射分析,天然碱特征的反射层为9.86Å、4.91Å、3.07Å、2.65Å等。红外吸收谱图上1462cm-1和1061cm-1吸收带为CO3基团内C—O伸缩振动引起,而851cm-1和681cm-1吸收带的C—O弯曲振动引起。

石盐

在本地区分布较少,主要发现于热海热田仙人澡塘及龙陵县巴腊掌等地现代热泉盐华中。纯矿物产出者少见,多半与盐华中无水芒硝和斜钠明矾共生。在瑞滇热田发现石盐与碳酸盐矿物、天然碱共生的现象。石盐主要是根据X射线衍射谱图上3.26Å、2.82Å和1.99Å等特征反射确定的。

α—自然硫

分布于热海、瑞滇、巴腊掌、攀枝花硝塘、朗浦热水塘等热田的热沸泉、喷气地面发育地段。多以被膜状出现于气液喷溢口四周孔壁或岩石裂隙周围,局部地段形成硫华矿石,硫磺塘即以此得名。

方解石和文石

主要分布于龙江口、槟榔江水热活动带中的中低温水热活动区内。在大盈江水热活动带多见于较老水热活动时期形成的钙华中,现今强烈活动的水热流体的蚀变矿物中也有所见,但不构成蚀变矿物的主体。对方解石、文石的物性结构不再赘述。仅予说明的是,水热活动区内方解石的X射线能谱分析,反映了方解石矿物中常有Mn、Fe、Mg、Si等元素的混入物。

二、水热蚀变作用与分带

腾冲水热活动区内的蚀变作用,受控于断裂系统的性质及活动强度,受控于水热流体的温度、压力、化学成分、pH值,和碳、硫、氧、氢逸度等众多因素的变化,以及水热流体幕式周期活动的影响。作为水-岩反应的载体围岩,自然也因岩石的矿物组成不同,构成不同蚀变矿物的组合与发育程度的差异。

由前述区内钻孔测温数据可知,在热田的浅表40m以内的变温层内,地温多在18~27℃区间,在局部地段(如澡塘河的仙人澡塘至蛤蟆嘴泉区间)地下浅表水温高达150℃。朗浦热水塘深钻201孔,在深度200m时地温为122℃;其他地段同等深度的地温变化在25~70℃的范围,可见区内地温变化因地而异,变化较大。作者对区内新、老硅华样品的二氧化硅矿物以及花岗岩体中的石英脉体包裹体测温表明,区内新硅华包体的均一温度平均值为200℃,老硅华的均一温度为270℃,形成时的压力为30×105Pa,钙华包体的均一温度为157℃;蚀变花岗岩体中的石英脉体包体均一温度为300℃,形成时的压力约80×105Pa。考虑到热海热田新、老硅华的爆裂温度均值大体在280℃,以及老硅华包体的均一温度270℃,推断本区地下热储温度为270℃,与一些学者依据化学元素温标计算推论的热储温度相近。据此可以认为,热海地区现代水热流体的活动主要在地面浅表200m以浅的空间。考虑到本区第四系地层由于新构造活动的抬升高度,以及本区最老硅华形成时间>35×104a,本区较老时期的水热活动应为地表以浅300m左右的空间。也即,本区水热流体的沸腾面深度,现今在地表以浅的200m深度以内,较老时期的水热流体沸腾面在地表300m以浅的深度。

腾冲水热流体的活动区域,所形成的诸多蚀变矿物组合,具有典型浅成低温热液作用的特征。区内硅华及蚀变花岗岩中,虽曾出现冰长石、叶蜡石、迪开石等较高温相的矿物,但数量偏小,分布也仅局限于高温沸泉的周围。本区特征的方英石+钠明矾石+高岭石矿物组合,是区内水热流体因沸腾而致的酸性淋滤作用的代表性产物。由于本区多期次的水热活动,强烈的酸淋作用,高岭石化范围广、强度大,并形成结晶度指数最高可达1.67的典型热液作用高岭石矿物,甚至形成纯净高岭石矿床,而远离强烈水热活动作用的地段,高岭石的有序度降低,并多与伊利石、蒙皂石共生。在水热流体呈现弱酸—弱碱性的介质环境中,则形成绢云母化、伊利石—蒙皂石间层矿物化、泥化(蒙脱石、绿泥石)的矿物组合。当水热流体的周期性活动处于衰减,又有大量Ca质组分供给的条件时,则出现碳酸盐化,于泉口周围形成钙华,在围岩中呈现方解石交代或以脉体形式充填。

水热活动区内的蚀变类型,主要有:

硅化

以出露于高温或热沸泉口周围的硅华、硅质层为特征。在热海热田内的分布,以SN向断裂带中最为发育。热沸泉水中的Si元素具有甚高的丰度,来源于深部水热流体对围岩的交代作用,SiO2在水热流体中以微米级球状硅胶的形式运移,出露于热沸泉的硅华及受蚀变作用的碱长花岗岩、水热爆炸角砾岩的胶结物中,经脱水作用可逐步向蛋白石、玉髓转变,最终形成显晶质石英。区内硅化作用形成的矿物为硅胶、蛋白石、玉髓、α石英、方英石等。硅华在水热活动作用过程中,并能呈现水热流体喷溢孔道的自封闭作用,从而导致沸腾-爆裂过程的不断发生和SiO2凝胶所携带的Au的沉淀。

明矾石化

明矾石为典型的热液蚀变矿物。区内的明矾石化,表明水热流体具有高硫逸度和强酸性(pH>3.5)环境,流体中的H2S与H2O所形成的H2SO4,对碱长花岗岩中的碱性长石、钾云母的化学作用,产生明矾石和石英。其分布主要见于热沸泉口周围和H2S气体的喷气地面,毛矾石、铁明矾、斜钠明矾、黄钾铁矾、无水芒硝等矾类矿物也常与之相伴。

高岭石化

水热活动区内高岭石化至为普遍,为强烈酸性淋滤作用所形成。在水热活动强烈地带,形成结晶度指数很高的1TC型有序板状高岭石,在远离水热活动强烈的地段,其有序度降低。一般有序和较无序的高岭石,限于分布在断裂带外围和较低温区。水热流体中K+/H+比值越低,越有利于钾长石的高岭石化,区内水热流体的H2S与碱长花岗岩中的钾长石的背景,无疑是热海热田区内普遍高岭石化,以至在沙坡形成高岭石矿体的良好环境条件。在水热活动强烈地段,曾见有迪开石、叶蜡石等典型水热蚀变矿物,但分布局限。

绢云母化

水热活动区内的绢云母,属于二八面体细粒白云母类型,大多具有较低温的1M多型或较高温的2M多型特征,以此可与风化作用形成的伊利石相区别。区内绢云母化,反映中低温热液蚀变作用和不断降温、降压的反应过程,存在钾长石➝绢云母➝伊利石的蚀变矿物演化系列。黄瓜箐地段,蚀变花岗岩绢云母化强烈,钾长石几乎全部分解为绢云母和石英,并保有板状钾长石的外形,即为佐证。

I/S间层矿物化

本区水热活动区内的伊利石—蒙皂石间层矿物化,反映了弱酸至弱碱的介质环境,其形成经历了2:1型层状硅酸盐结构的相互转化过程。区内持续多期的水热活动,促进了I/S间层矿物的普遍发育。在IS间层矿物中,仍保留有二八面体的结构性质,K+离子数随膨胀层由28%→32%时,相应的由0.46减小到0.21,总层电荷数也随膨胀层的增加而降低。本区I/S间层矿物中,未发现间层比更高的矿物。

泥化

本区泥化,发育在水热活动中心的外围地带,主要矿物为蒙脱石、绿泥石,形成于温度较低的环境,并有I/S间层矿物、碳酸盐矿物与之共生。

以上六种水热蚀变类型,总体上共同构成了浅层低温热液相环境条件下的蚀变特征,虽或缺一些蚀变类型,仍可与世界通常所见的火山热液区、热泉型蚀变类型相比较。区内各类蚀变,都表征了其形成的背景条件与形成过程。由于本区水热流体的持续性、周期性活动,尤其是后期水热流体活动的作用,使本区蚀变类型常具彼此叠加的特征。区内的蚀变分带,从蚀变演化过程及特征上,应按上述六类分带,但由于叠加作用及原岩矿物组分的不同,宏观上可归并为以下分带:

硅化、明矾石化带;

高岭石、迪开石化带;

绢云母、伊利石—蒙皂石化带;

蒙脱石、绿泥石泥化带。



蚀变岩石的热液矿床~

1.变质的岩石与变质岩 主要结构和局部(或次要)结构在不同的变质岩石中也不相同。在变质的沉积岩和火成岩中主要结构是各种变余结构,它是各类变质的沉积岩和火成岩基本名称的主要依据之一,岩石中也会有变晶结构,应属于局部(或次要)结构。在大多数变质岩中,主要结构是变晶结构,是按矿物粒度,晶形特征(按前少后多)的次序排列命名的,在这些岩石中出现的少量变余结构(砂粒、变余斑晶等)、矿物之间包裹关系的结构、变质反应结构及交代结构,显微变形结构等,都属局部(或次要)结构。在具有碎裂结构、糜棱结构和交代结构的碎裂岩类、糜棱岩类和气液变质岩类中,还应注意观察原岩结构的保留程度,如变形作用和交代作用较轻,原岩结构保留较多时,则以原岩结构为岩石的主要结构,而碎裂和交代等结构成为局部结构。如变形或交代作用较强,形成碎裂岩、糜棱岩和**化岩时,则岩石中残余的原岩结构,属于局部结构。2.气液变质岩与热液矿床、围岩蚀变及蚀变围岩 由热的气体和溶液(气水热液)对已形成岩石(火成岩、沉积岩和变质岩)的交代作用,使原岩的化学成分、矿物成分、结构、构造发生变化形成新的岩石,称为气液变质岩。由于这类岩石是在开放体系异化学变质作用中经交代作用形成的,故也称为交代岩。在热液矿床形成过程中,围岩受到气水热液交代蚀变作用,称为围岩蚀变,遭受蚀变的围岩称为蚀变围岩。3.气液变质岩的命名原则 :(1)原岩特征基本保留,交代蚀变矿物和矿物组合在岩石中含量5%~50%的气液变质岩命名原则是:弱**化+原岩名称,例如:弱云英岩化黑云花岗岩(2)原岩特征仍能辨认,交代蚀变矿物和矿物组合在岩石中含量50%~90%(85%)的气液变质岩命名原则是:**化+原岩名称,例如云英岩化花岗岩(3)原岩特征已消失,交代蚀变矿物在岩石中含量>90%(85%)的气液变质岩的命名原则可分为如下两种:1)对已被公认气液变质岩(矽卡岩、云英岩、青磐岩、绢英岩、黄铁绢英岩等)的名称是该类岩石的基本名称。其命名原则是:蚀变(或次要)矿物(前少后多)+基本名称,例如透辉石榴矽卡岩;2)出来上述岩类以为,其他大多数气液变质岩的命名原则是:次要蚀变矿物(前少后多)+主要蚀变矿物全名+化+岩(4)原岩特征保留,交代蚀变矿物和矿物组合在岩石中含量<5%的气液变质岩,使用原岩名称,例如:黑云花岗岩

软弱围岩大变形对隧道施工和运营的影响极为严重,常造成延误工期、增加投资等。如果采用TBM技术施工,则可能造成TBM掘进机报废。大量工程实践表明,隧道围岩大变形不仅受岩土体结构控制,而且与地层岩性关系密切。根据野外地质调查结果,滇藏铁路沿线不少地段发育有工程地质性质较差的软弱岩体,主要包括中新生代的泥质岩、不同时代变质的片岩、劈理化板岩以及热液蚀变作用形成的蚀变软岩等,它们在隧道开挖条件下,将产生隧道围岩大变形问题。
一、泥质岩与隧道围岩大变形
1.泥质岩的一般工程地质特征
泥质岩是各种泥岩、页岩、粘土岩及泥质粉砂岩的总称,从工程地质和岩石力学的角度,多数泥质岩属软弱易变的复杂岩石,或言之,大多数泥质岩属软岩(soft rock),很多工程事故的发生都与泥质岩的不良工程特性有关。值得一提的是,在工程实践中人们往往将泥质岩与膨胀岩联系在一起,实际上,膨胀岩是泥质岩中性质最坏的一类,并非所有的泥质岩都是膨胀岩。大量工程实践和研究表明,泥质岩的工程特性及其在工程影响下的性质变化取决于泥质岩的成岩胶结作用和工程活化作用。尽管我国不同地区不同时代的泥质岩成岩胶结类型和胶结程度极其复杂,但仍有一定的规律性(曲永新等,1991),即:①古生界泥质岩为强胶结和极强胶结的非膨胀泥质岩,但上二叠统上部(上石盒子组和石千峰组)分布有一定数量的弱-中等胶结的微膨胀和弱膨胀的泥质岩。②中生界和新生界泥质岩以弱胶结和中等胶结类型为主,我国主要区域性弱胶结的膨胀岩地层包括:上侏罗统—下白垩统泥质岩、古近系泥质岩、新近系泥质岩,它们是我国工程地质性质最差的区域性软弱岩石。③泥质岩成岩胶结作用不仅控制和影响岩石的膨胀势,而且控制和影响岩石的强度和风化耐久性,即随着胶结程度的升高,强度增大、耐久性增强。④受风化作用影响(包括古风化作用和现代风化作用)的泥质岩有胶结作用弱化、强度降低、物理化学活性增高的趋势。
滇藏铁路沿线的泥质软岩主要分布在滇西北的扬子地台区,三江造山带和喜马拉雅造山带地区的三叠系和古生界的泥质岩多发生了不同程度的变质作用而变成泥板岩、千枚岩和片岩等,其强度和崩解耐久性有所提高。滇西北地区的侏罗系和白垩系主要由砂岩与泥质岩互层组成,其中泥质岩(包括泥岩、粉砂质泥岩、泥质粉砂岩)所占比例较大,主要表现为褐红色或紫红色及灰色或灰褐色,结构比较均一,呈块状或层状。
2.与泥质岩有关的工程地质问题
前已叙及,泥质岩往往易于风化,是风化耐久性较差的岩石,也是边坡易滑地层,工程场地以泥质岩作为边坡岩体时,会出现不同程度的滑坡灾害。根据以往工程实例分析,与泥质岩有关的隧道工程地质问题主要表现在以下方面:
(1)在深埋隧道开挖条件下,由于泥岩强度低,常常导致隧道围岩变形量大,从而影响隧道施工安全和支护方式的选择。
(2)弱胶结的泥质岩在盐井一带最大单层厚度可达3 m,在干湿交替变化条件下,将表现出明显的膨胀性,促使隧道围岩出现大变形,对隧道安全运营和支护有显著影响。
(3)当泥质岩以薄夹层形式出现时,往往容易形成层间剪切带,这种情况对边坡稳定和隧道围岩稳定都极为不利。
在滇西北大理-丽江段铁路建设过程中,已经出现了泥质岩不良工程性质引起的隧道大变形问题,并制约了铁路隧道施工安全。例如:2006年6月北衙隧道发生的塌方事故就与节理化泥质岩有很大的关系。
二、变质岩系中的软弱岩体和韧性剪切带与隧道围岩大变形
变质岩系列中富含片状矿物的片岩(绿泥石片岩、云母片岩、滑石片岩、云母石英片岩、角闪片岩等)、千枚岩、薄板岩等不仅岩性软弱,而且通常片理、板理发育,各向异性显著,在工程上通常属于软弱岩组。在浅埋隧道中,常因风化程度高,岩石性质变得极其软弱,隧道极难支护;在深埋隧道开挖条件下,可能出现围岩片帮、溃曲和底鼓等大变形现象,严重影响隧道施工安全和支护方式的选择。根据野外调查和区域地质资料综合分析,工程沿线该类软弱岩体主要分布于以下区段:①虎跳峡镇-小中甸;②奔子栏-德钦北;③通麦-鲁朗;④米林-加查等地段。还应当看到,滇藏铁路沿线穿越规模较大的断裂带不计其数,断层泥与碎裂岩的组合带可能引发较大规模的大变形,鉴于断裂带对工程的影响众人皆知,不再赘述。
在滇西北-三江地区,普遍发育一种特殊的构造型式——韧性剪切带,其与藏东南和喜马拉雅构造带的广大变质岩系均属造山带产物。在中温和中高压条件下,造山带强烈的构造变形作用形成的断裂大多表现为片理化、劈理化形式的韧性剪切带,很少为脆性断裂,因此很少看到典型的断层泥、碎裂岩等。由于三江地区韧性剪切带的分布范围和伸展方向与规划中的滇藏铁路线路总体延伸方向基本一致,铁路线不可避免地要穿过这些韧性剪切带,因而对滇藏铁路的规划和建设具有一定的影响。
1.滇西北-三江地区韧性剪切带的构造特征
滇西北地区韧性剪切带的发育主要受区域地质构造控制。受地质历史时期多次构造运动的影响,滇西北地区反映挤压剪切作用的韧性剪切带十分发育,其空间分布和产状多与区域活动断裂一致,局部成为断裂带的重要组成部分。按其集中分布区域和与之相关的区域断裂带,从云南丽江至西藏盐井,由南到北可划分为3个劈理化带密集分布区:中甸断裂韧性剪切带分布区、金沙江断裂韧性剪切带分布区和澜沧江断裂韧性剪切带分布区(图11-20)。3 个集中分布区空间展布方向由近SN向NW-SE偏转,呈右阶雁行排列。各分布区内韧性剪切带分布集中,规模大(上百米至几百米),空间排列交错断续。
(1)澜沧江断裂韧性剪切带
该韧性剪切带北起西藏自治区芒康县盐井镇,向南经佛山、古水,到云南省德钦县升平镇境内,长度大于130 km。区内韧性剪切带广泛分布,澜沧江断裂沿澜沧江河谷蜿蜒延伸,与韧性剪切带走向一致,时而切割韧性剪切带。剪切带主要以劈理形式出现,走向一般为330°~340°,高角度倾斜,倾角一般在80°以上。劈理穿过不同时代的地层,其中最新地层是古近系湖相浅黄色变质长石砂岩夹白色灰岩,说明韧性剪切带在新生代有活动。劈理切割不同岩性的岩石,以板岩中板劈理最整齐,常常与层理相一致;灰岩中劈理分布不均,往往夹有挤压透镜体,有的是大型挤压透镜体;砂岩和玄武岩中劈理发育程度介于板岩和灰岩之间(图11-21)。劈理带中有岩脉穿插,局部沿劈理面发育有擦痕、阶步和羽列,指示沿劈理面有多期位移。
图11-20 挤压劈理化带分布区



图11-21 澜沧江右岸鲁瓦村北的韧性剪切带剖面图

(2)金沙江断裂韧性剪切带
与金沙江断裂相关的韧性剪切带主要分布在断裂两侧及其断裂剪切带范围内,在调查区域内,金沙江韧性剪切带在德钦县奔子栏镇-贺龙桥段比较典型,该处劈理间距0.5~20 cm,呈330°~350°方向展布,倾角较陡,一般在70°~80°左右,局部直立(图11-22)。沿韧性剪切带发育断层三角面地貌。在软硬相间的岩石中,软弱层强烈片理化,坚硬层破碎并受挤压形成透镜体,灰岩中透镜体常形成江边突出的礁岛。当沿劈理化方向有岩性软硬变化时,则发生揉皱弯曲。片理或劈理产状具有不稳定性,面与面之间有相互穿插,这种穿插导致岩石碎裂化。
(3)中甸断裂韧性剪切带
该韧性剪切带主要沿中甸断裂方向延伸,在断裂两侧一定范围内分布。韧性剪切带中劈理分布密集,局部地段韧性剪切带成为断裂带的主要组分。在上虎跳峡口,韧性剪切带产状与中甸断裂关系密切,走向310°~330°,倾角较陡,一般75°~85°,劈(片)理化岩体剖面上延伸宽度超过400 m,发育在灰黑色板岩、灰色劈(片)理化玄武岩和深灰色劈理化灰岩中,被EW向断裂切割,反扭错断(图11-23)。劈理化结构面间距一般1~20 cm,结构面平直细密,岩体中多见方解石、石英细脉穿插;局部片理化发育,厚约0.2~5 cm,揉皱发育,较破碎,在重力作用下易变形,在400 m范围内,有多处崩塌落石和滑坡地质灾害点。

图11-22 德钦县奔子栏一带的韧性剪切带剖面图


图11-23 丽江玉龙县金沙江右岸上虎跳峡口韧性剪切带剖面图

2.韧性剪切带对隧道工程的影响分析
滇西北地区韧性剪切带分布广泛,常表现为劈理密集、岩体破碎,带中岩性复杂,工程地质性质多变,常常和其他方向的断裂、劈理带及节理岩脉相交切,在后期的构造运动和外动力作用中受到进一步的改造,有的揉皱作用强烈,使得带内劈理变得更加密集和复杂,岩体性质进一步恶化。除了对斜坡稳定性产生显著影响外,韧性剪切带对隧道稳定性的影响也比较显著。

图11-24 劈理化岩体弯折溃曲机理和简化力学模型

当韧性剪切带的劈理面或片理面倾角较陡,岩体(如板岩、千枚岩)强度软弱时,隧道围岩可以发生弯折、溃曲破坏;在隧道顶板和肩部,劈理面和其他次一级节理面组合,容易形成不稳定的块体,造成隧道顶板掉块甚至冒顶;若设计隧道走向与劈理面走向平行,作为隧道围岩中的一组优势岩体结构面,在边墙附近岩体沿劈理面容易产生片帮剥落或垮塌;在岩体片理化程度高,揉皱发育地段,岩体比较破碎,对隧道整体稳定性不利,当与其他结构面在空间上有不利组合时,可能会发生大范围的塌方。特别是当地应力水平较高、隧道埋深较大、劈(片)理化岩体储能性质较强时(片理化灰岩,片理化玄武岩等),在一侧围压卸除条件下,容易发生快速弯折溃曲现象,其发生机理为:隧道开挖造成岩体快速卸荷,在较强的地应力作用下,沿平行隧道壁的劈(片)理面进一步发育成张裂隙,将围岩分割成薄板状,薄岩板受力弯曲,储存应变能,同时向隧道临空方向位移,当位移超过某临界值,裂隙迅速扩展,使隧道围岩发生快速大变形,甚至发生岩爆(图11-24)。
三、粘土化蚀变软岩与隧道围岩大变形
滇藏铁路途经的三江和藏东南地区地质构造演化异常复杂,经历了多期强烈的构造岩浆作用并伴随发生岩浆热液成矿和热液蚀变作用,加之新近纪以来青藏高原强烈隆起为特色的差异性新构造活动及高山峡谷地貌,使得滇藏铁路建设面临着极为复杂的工程地质环境,遇到了多种多样的复杂工程地质问题。其中,铁路沿线广泛分布、类型多样的火成岩侵入体在热液蚀变作用下常形成粘土化(蒙脱石化、伊利石化、高岭石化)蚀变岩带,尤其是蒙脱石化蚀变岩既是强度极低的软岩,又是典型的膨胀岩,由其引起的隧道和边坡变形破坏问题比较突出(照片11-1)。研究表明,造山带、构造岩浆带、热液成矿带的区域发育规律决定了蚀变岩的区域分布和发育特征及工程特性,例如滇藏铁路滇西北段多为蒙脱石化,西藏段多为高岭石化和伊利石化。因此,很有必要根据铁路沿线构造-热液作用和成矿规律,对蚀变岩的类型、形成机理和发育规律进行分析,并研究蚀变岩的不良工程地质特性,从而指导滇藏铁路蚀变岩分布区的工程地质预测及工程问题防治。
滇藏铁路沿线的蚀变岩是喜马拉雅-三江成矿域的重要组成部分,跨越青藏东部、川滇西部的横断山区,面积50×104 km2。该带地处特提斯-喜马拉雅构造带的东部及向南急转弯部位,是中国最重要的岩浆热液成矿域之一。蚀变岩的分布规律主要表现在蚀变岩类型和发育程度具有明显的分区性。根据野外调查和测试分析,大致可以将滇藏铁路沿线划分为3个区,即:滇西北蒙脱石化基性超基性蚀变岩分布区、德钦-八宿蚀变岩分布区、藏南蚀变岩分布区。
1.滇西北蒙脱石化蚀变岩分布区
该分布区出露的多为蒙脱石化蚀变岩带,蚀变岩具有单体规模小、蚀变程度高、工程性质差的特点。蚀变岩的粘土矿物组成绝大多数都是单矿物的蒙脱石,导致该地区的蚀变岩既是强度极低的软岩,又是典型的膨胀岩。该分布区的蚀变岩,以母岩普遍发生蒙脱石化为主要特征。主要属于岩浆期后的热液蚀变岩,少量为火山岩的热液蚀变。根据滇西北蒙脱石化基性超基性蚀变岩分布特征,大致可划分出3个蚀变岩带(图11-25)。
(1)大理-金坪基性和超基性岩带 位于金沙江-哀牢山缝合带东缘,扬子准地台的西缘,中小型火成岩体密集成群分布在大理海东一带和南端的金坪地区,单个岩体延伸排列与所处构造方位一致。其岩石组合主要可分为环状和层状2种类型:① 环状基性超基性岩体多呈NW-SE向呈带状分布,单个岩体呈似层状、扁豆状和扁柱状。岩体通常内部为超基性、外部为基性,多与围岩呈近似整合状接触,少数切穿围岩。岩体长度一般小于1.0 km,宽数百米,MgO含量28.8%~39.2%。② 层状基性超基性岩体主要为众多分布广但规模小的岩墙,厚数米至数十米,少数呈岩株状出现,其岩石类型包括辉绿岩、辉长辉绿岩或辉绿玢岩。这些岩脉大多沿区内次级断裂及其交汇的部位分布。
(2)金沙江基性和超基性岩带 主要位于金沙江断裂与德钦断裂之间,岩带长约240 km、宽25 km的南北地带,已知岩体超过200个,组成20余个岩群,如德钦白茫雪山垭口、东竹林等岩群,每个岩群由几至十几个岩体组成。超基性岩体的分布通常与断裂一致,单个岩体长数十至数百米,长宽比一般5:1~20:1,岩体多呈单斜层状或透镜状,与围岩产状近乎一致。基性岩一般呈长条状出露,长数十至数百米,宽数米至数十米。岩石类型主要为辉绿玢岩、辉绿岩、辉长岩等,也有中性、酸性侵入体分布。德钦白茫雪山北麓冰碛物中的大量蒙脱石矿物即来自于该蚀变岩带。
(3)中甸-丽江中性和中酸性斑(玢)岩带 单个岩体形态复杂,规模较小,主要岩石类型为闪长玢岩、花岗闪长玢岩、石英二长斑岩、二长花岗斑岩、花岗斑岩,多分布在区域断裂两侧。
2.德钦-八宿蚀变岩分布区
本区可划分为2个带,一是澜沧江基性和超基性岩带,另一个是三江上游分布区。前者主要位于澜沧江断裂东侧,已知岩体近百个,其展布与构造线一致,多呈NNW-近SN向。后者比较分散,并且常与干燥河谷硫化矿床氧化带的硫酸盐类析出物相伴生。该分布区的蚀变岩带具有以下发育特征:

照片11-1 滇藏铁路沿线典型蚀变软岩特征


图11-25 三江地区地质背景和主要蚀变岩带分布图

(1)蚀变岩多处于构造断裂部位或遭到构造破碎的区域。
(2)大量表生硫酸盐类沉积和氧化带棕色、棕红色、橘黄色等颜色特征以及黄铁矿的分布说明,许多蚀变岩的形成与硫化物矿床(矿脉)的热液蚀变和表生氧化作用有关。
(3)蚀变程度及蚀变岩性质都极不均一。
(4)根据现场调查和原岩XRD测试结果,发生蚀变的火成岩侵入体以中酸性岩浆岩为主,岩石的蚀变主要是斜长石的蒙脱石化;黑云母、角闪石的绿泥石化。
(5)处于硫化矿氧化带部位的蚀变岩,因受水的作用,在粘土矿物组成上出现明显的高岭石化现象(高岭石相对含量达19%~25%)。
3.藏南蚀变岩分布区
该区可以按照蚀变岩类型进一步划分为3个带(亚类),即喜马拉雅高温水热蚀变岩带、波密区域性大断裂花岗岩中低温水热蚀变岩带、基性超基性岩蒙脱石化蚀变岩带。
(1)喜马拉雅高温水热蚀变岩带 喜马拉雅缝合带属于中国乃至世界热流高异常区,温度高于80℃温泉43处,沸泉42处,地下水富含S、Cl、Na等元素,热水的水化学类型包括:SO4·HCO3—Na,HCO3 ·SO4—Na,SO4 ·Cl—Na。由于地下水富含、Cl-,蚀变岩普遍发生了高岭石化现象,尤其是日多温泉一带安山岩的蚀变岩中高岭石含量达28%~55%。应当指出,该蚀变岩带水热作用不均一,沿裂隙呈面状蚀变,蚀变岩性质较差(图11-26,图11-27)。
(2)波密区域性大断裂花岗岩中低温水热蚀变岩带 XRD定量测试结果表明,该蚀变岩带的粘土矿物组成为高混层比的伊利石/蒙脱石混层矿物、少量伊利石和绿泥石。其中,伊利石主要来自钾长石的蚀变作用,绿泥石为角闪石、黑云母的蚀变产物。在中低温地下水作用的断裂带中常有次生CaCO3分布,由于断裂带岩石比较破碎,加上高混层比的I/S混层矿物的大量分布,此类断裂蚀变岩通常具有很高的物理化学活性和极低的强度,在隧道或边坡开挖中极易产生地质灾害。

图11-26 西藏日多温泉一带的蚀变岩发育特征剖面


图11-27 西藏德仲温泉一带蚀变岩特征剖面

(3)基性超基性岩蒙脱石化蚀变岩带 该类蚀变岩以曲松红旗铬铁矿为代表,矿体围岩(辉橄岩)蒙脱石化蚀变程度高,工程性质差(照片11-1)。
4.粘土化蚀变软岩对隧道工程建设的影响
由于粘土化蚀变岩不良的工程地质特性,在隧道掘进和边坡开挖中常出现严重的岩体变形破坏问题。例如,滇藏铁路大理-丽江段的禾洛山隧道,围岩为遭受热液蚀变的玄武岩,在宏观上表现为相对较完整的玄武岩夹蒙脱石化蚀变岩组合。在2005年隧道工程施工过程中,自DK55+622至DK61+710约5 km的范围内,曾发生过5次与蒙脱石化蚀变岩有关的塌方问题,有时甚至不到100 m就会出现一次塌方,塌方体积一般20~30 m3。由于强烈粘土化蚀变的岩体常呈土状或泥状,现场技术人员常把它们看作是凝灰岩及其全-强风化的产物。而实际上塌方的出现主要是由于蒙脱石化蚀变岩的性质非常软弱,在干湿交替和松弛条件下极易发生膨胀变形,加上围岩节理发育、破碎程度高,开挖后自稳能力差,从而造成围岩坍塌(图11-28)。在西藏段,由于蚀变作用常与干燥河谷硫化矿床氧化带盐类析出物相伴产出,不仅岩体的工程性质软弱,而且硫酸盐类析出物的腐蚀作用和盐胀作用也是重要的工程地质难题,因而使得问题更加复杂化。

图11-28 禾洛山隧道掌子面(DK61+235)处的蚀变岩破坏特征

现场调查和室内测试认为,蚀变岩的分布与铁路沿线热液矿床的分布具有相似的规律。在蚀变岩工程地质调查中,不仅要搞清热液矿床和区域热液蚀变岩带的分布,还要注意温泉和地下热水的分布,它们的长期作用亦可使岩石产生蚀变。隧道建设主要应从以下方面加强防治工作:
(1)根据工程区蚀变岩的发育特征和分布规律,结合前期地质勘察成果,开展隧道工程地质超前预报,主要可以采用深入细致的隧道地质编录与水平超前钻及TSP综合预报相结合,及时掌握蚀变岩的分布及其工程性质变化。
(2)在粘土化蚀变岩带开挖隧道,应加强超前支护,根据蚀变岩的厚度和性状加长超前支护导管的长度,并在蚀变岩出露部位缩短环向支护间距,适时实施全封闭支护,稳定开挖面。对于正常支护的径向锚杆,应根据围岩情况长短结合。在软弱破碎岩体区,锚杆可适当地加密、加长。
(3)在粘土化蚀变岩分布区,应合理选择施工方法,隧道开挖宜采用微台阶法,少爆、多挖,减少扰动。此外,蚀变岩分布区的隧道围岩通常软硬变化较大,使用TBM施工时,可能因软弱围岩大变形和不均一变形而造成卡机事故,因此,TBM技术不适用于大量分布此类围岩的隧道施工。
(4)粘土化蚀变岩的物质组成和结构决定了在有水的情况下隧道塌方、冒泥问题更为显著,因此,在富水地段应采取堵排结合的方法,采用帷幕注浆或超前钻引水,尽量减少隧道围岩与地下水的作用。

热水蚀变的结构模型
答:正如Franklin等(1981)所指出,与VMS矿床相伴的热水蚀变有两个主要式样:①下伏于块状硫化物矿体的蚀变岩筒;和②区域规模的半整合或层控蚀变带。在呷村矿区,这两种式样的热水蚀变均较发育,在下部镁铁质火山岩系发生了以绿帘石化为主的半整合蚀变,在上部长英质岩系则发生了以硅化和绢云母化为主的蚀变岩筒,从...

热水蚀变的结构模型
答:(5)层控的整合-半整合蚀变带常直接发育在块状硫化物透镜体下部的下盘岩石中,蚀变以石英-绢云母-黄铁矿蚀变为主,绿泥石和碳酸盐常呈补丁发育。这种蚀变带垂向延伸从50~200m不等,顺走向延展2~5km,如呷村矿床。(6)在近海底的蚀变岩筒或者整合-半整合蚀变带的深部,常发育一个较深层位...

水热蚀变
答:腾冲水热活动分布地区,都有水热蚀变矿物的出现,尤其是在热沸泉出露较多的地段更为特征。热海热田区内出露的碱长石花岗岩、玄武岩类,以及沉积岩类,岩石矿物种类繁多,在强烈水热流体活动作用下,水热蚀变矿物纷呈多彩,是研究现代水热活动过程的典型区域。 本节侧重论述热海热田区的水热蚀变研究成果,并讨论在朗浦...

热(液)蚀变晕圈遥感信息提取研究
答:为了对这个典型的热(液)蚀变晕圈有更深入的认识,在此从热(液)蚀变晕影像特征角度对其进行分析,该蚀变晕由一个南北略长,东西略短的椭圆形构成,其直径分别为1600m及1300m左右,阿希金矿的古火山口机构位于蚀变晕的西南区。对应于阿希金矿主矿体-I号含金石英脉的地区是热(液)蚀变反映最明...

热液蚀变作用
答:(1)蚀变成因绢云母是由矿化热液蚀变过程中形成的绢云母。蚀变成因绢云母的发育部位与围岩性质和热流体性质有关,主要表现形式有两种:①蚀变成因绢云母分布在含矿层中及其下侧,常与硅化共生,呈多种多样形态集合体,绢云母局部集中形成绢云岩和绢云条带。绢云母呈淡黄、淡绿色,粒度细小,一般为0.03~0.15mm,单晶呈竹...

热液蚀变与矿化
答:钾硅酸盐化通常为最早的蚀变类型, 其形成与出溶的高温 (>450℃; Gustafson etal., 1975) 岩浆热液有关。青磐岩化同时或略晚于钾硅酸盐化蚀变, 其形成通常也与岩浆热液有关, 只是同钾硅酸盐蚀变相比, 水/岩比要小得多, 不过, 有时青磐岩化的形成也可因加热的雨水所致 (Proffett, 2003)。 绢...

热液蚀变和岩体的关系
答:热液蚀变主要集中在浅部,向深部迅速减弱。斑岩的蚀变也是上部强烈,向下部明显减弱。上述情况明显反映出热液蚀变与斑岩体有关,与斑岩形成的热梯度有对应性。整个北西西向的蚀变带,以斑岩体为中心,对称分布,而与推断的近东西向分布的隐伏岩体明显不一致,二者相交。由此可知,热液蚀变与岩浆上侵定位...

什么叫水热蚀变
答:就是被太阳暴晒后又被冷水冲击 就会碎裂像被腐蚀了一样

蚀变带及特征
答:黄铁绢英岩化是矿床内普遍发育的一种蚀变作用,分布在蚀变带的中心。其实质是含水铁镁硅酸盐在热液交代过程中,过饱和的二氧化硅析出形成硅化石英;长石被分解成绢云母和石英;暗色矿物蚀变时析出的铁与热液硫结合生成黄铁矿。它是绢云母化、硅化和黄铁矿化的统称,是区内的主要蚀变,与金矿有着密切的时空关系。 4...

火山活动形成的热环形构造
答:这种热蚀变带常常以岩体为中心呈环带状分布,形成比岩体本身要大的热(液)蚀变晕圈。另外,强大的岩浆热动力会在围岩中产生热动力变质、变形作用,形成围绕岩体的热动力变质-变形带。这为我们从遥感图片上识别这类热环形构造提供了物质基础和便利条件,使我们不仅能识别已出露于地表的岩浆侵入体热环形...