影响岩石力学性质的因素 影响岩石力学性质及变形特征的内在因素有哪些?

作者&投稿:彘桦 (若有异议请与网页底部的电邮联系)

(一)围压

设地壳深部一岩块与地表距离为z,上覆岩层密度为ρ,重力加速度为g,则该岩块受上覆岩层的压力为σz。在σz的作用下,岩块有水平方向扩张的趋势,但由于围岩的制约,不允许横向扩张,即ex=ey=0,因此,水平方向的压应力σxy。则有:

构造地质学(第二版)

式中:μ为泊松比。在地壳深处,岩石处于高温、高压状态,延性明显增加,应力差减小。当μ=0.5时:σxyz=ρgz,τxyxxyz=0。此时岩石处于静水压力状态。

带有围压的岩石力学实验是将圆柱形试件放在密封压力室内,四周用油或气体施加围压σ23,由活塞施加轴向载荷σ1。以σ13为纵坐标,以应变ε为横坐标,即可绘制出应力-应变曲线。

在不同围压下进行的大理岩三轴实验表明(图3-31),随着围压增加,岩石弹性极限增大,延性增强,强度及破坏前的应变增大。但岩石类型不同,所受影响的程度不同。

图3-31 大理岩在不同围压下应力-应变曲线

(据Karman,1912)

对碳酸盐类岩石及砂岩来说,围压对弹性极限的影响较小,对延性影响较大。例如,Carrara大理岩(图3-31)在围压为零时呈现脆性,在应变小于1%时即发生脆性破裂;当围压增加到50MPa时出现脆-延性过渡状态;当围压达68.5MPa时则出现明显的延性流动。

对大部分硅酸盐类岩石来说,围压的加大将使弹性极限有显著提高,但破裂前的永久变形量提高不大。玄武岩和花岗岩在室温下脆-延性转化的围压为1000MPa,而石英岩在2000MPa时仍为脆性。

围压对岩石力学性质影响的原因在于围压增加使固体物质质点彼此靠近从而增加了岩石内聚力。

(二)温度

在地壳常温层以下,温度随深度的增加而增加。估计地壳底部温度可高达1100~1300℃。因此,在研究地壳岩石变形时必须考虑温度因素。

在固定围压、不同温度条件下进行的岩石力学实验表明,温度升高可降低岩石的弹性极限和强度,促进岩石的延-脆性转化。

图3-32是花岗岩在500MPa围压、各种温度下的应力-应变曲线。在室温情况下花岗岩是脆性的;在300℃时已产生显著的永久变形;在800℃时几乎是完全延性的。

图3-32 花岗岩在500MPa围压各种温度下应力-应变曲线

(据Griggs et al.)

温度还可以促进蠕变和松弛现象的发生和发展。

温度升高产生延性的原因是由于在高温条件下岩石内部分子的热运动增强,因此削弱了岩石的内聚力,使晶粒容易产生滑移。

(三)孔隙液压

地壳的岩石中含有各种原生或次生的孔隙或裂隙。对结晶岩石来说,原生孔隙或裂隙往往存在于矿物颗粒接触面间或矿物内部(如气、液包裹体),沉积碎屑岩的孔隙存在于碎屑颗粒之间。人们用孔隙率表示岩石中孔隙的多少:

构造地质学(第二版)

式中:n为孔隙率;Vv为岩石中孔隙的体积;Vs为不含孔隙岩石的体积。一般情况下,砂的孔隙率为40%,Handin et al.(1963)给出Berea砂岩的孔隙率为18.2%,Repetto粉砂岩的孔隙率为5.6%,Hasmark白云岩的孔隙率为3.5%。

如果岩石的孔隙中含有水,在成岩过程中孔隙缩小将造成孔隙内的液体对矿物颗粒产生一种压力,这种压力与矿物表面垂直,称为孔隙液压。根据石油、天然气开发的实际资料,孔隙液压随着岩石埋藏深度的增加而增加,但并非呈简单的线性关系,在一定深度上两者趋近相等。设λ=孔隙液压/围压,则随着深度增加,λ→1。

由于孔隙液压与矿物颗粒表面垂直,所以将直接减缓围压的作用。设围压为P,孔隙液压为Ps,则有效围压Pe=P-Ps。因此孔隙液压对岩石力学性质的影响与围压相反:它使岩石的延性、强度和弹性极限降低,脆性增加。

图3-33是印第安纳石灰岩在68.950MPa围压条件下不同孔隙压力时的应力-应变曲线。当孔隙压力为0时(曲线⑦),在实验的高围压当孔隙压力为0时(曲线⑦),在实验的高围压情况下灰岩的弹性极限及强度很高,并出现应变硬化;当孔隙液压与围压相等时(曲线①),由于孔隙液压与围压抵消,应力-应变曲线与单轴实验相同;当孔隙液压小于围压时,应力-应变曲线介于曲线①和⑦之间。从图3-33中可以清楚看出,随着孔隙液压增高,石灰岩弹性极限、强度及延性变形迅速减小。

图3-33 印第安纳石灰岩的应力-应变曲线

(据Spencer,1981)

围压68.950MPa;孔隙压力:①68.950MPa,②65.055MPa,③55.160MPa,④41.370MPa,⑤34.475MPa,⑥27.580MPa,⑦0MPa

孔隙中的流体对变形的另一种作用称为水弱化作用。如不含水石英在500MPa围压下500℃时可承受3500MPa应力,当含水量为0.1%时,同等条件下的强度仅为100~200MPa。

(四)时间

时间对岩石力学性质的影响是多方面的。如快速加力岩石可表现脆性变形,缓慢加力脆性物质也能出现塑性变形。又如,当多次、重复加力时,在没有达到岩石强度极限的情况下可使岩石发生脆性破坏。或者说,多次重复加力可以降低岩石的破坏强度(图3-34)。当在重复加力情况下破坏应力降低到某一极限值时,如继续降低应力,无论重复加力多少次也不能引起岩石破裂。该极限值称为疲劳极限。

图3-34 某金属耐力曲线

(据M.P.Billings,1972)

在地质构造的应力-应变解析中,时间对岩石变形的影响主要体现在应变速率、蠕变和松弛三个方面。

1.应变速率

应变速率是指单位时间内应变的变化量:

构造地质学(第二版)

式中:

为应变速率;ε为应变;t为时间,常用秒(s)作单位。

图3-35 500℃,500MPa条件下Yule大理岩在不同应变速率下的应力-应变曲线

(据Heard,1963)

随着应变速率降低,岩石强度降低,弹性极限下降,塑性变形增加。图3-35是500℃,500MPa条件下不同应变速率时Yule大理岩应力-应变曲线。从图中可以看出,在应变速率为4.0×10-1/s时,182MPa应力才可以产生10%的应变;应变速率为3.3×10-8/s时,小于45MPa的应力即可产生10%的应变。

一般认为,地壳缓慢运动的应变速率

=10-14~10-15/s。实验室中最慢的实验可以模拟的应变速率为

=10-8/s。因此需根据实验外推。Eyring(1960)的外推方程式为:

构造地质学(第二版)

式中:E为扩散激活能;R为Bolzman气体常数;T为绝对温度;A为具有应变速率量纲的实验常数;σ为应力差;f(σ,t)是与温度和应力差有关的常数。

2.蠕变

蠕变是指岩石在恒定载荷作用下应变随时间缓慢增长的现象。在地壳变形过程中,时间以百万年计,因此蠕变现象是重要的。尽管实验室实验中很难模拟如此长时间内的蠕变变形,但可以充分显示时间对岩石变形的影响。

图3-36是索伦霍芬石灰岩蠕变实验曲线。该石灰岩在室温常压下,强度为251.06MPa。在长期实验中,在恒定137.30MPa压力作用下即发生变形:第一天缩短0.006%,10天后缩短0.011%,100天后缩短0.016%,400天后的缩短量超过0.019%。

典型蠕变曲线由三部分组成(图3-37):①过渡蠕变阶段(AB段),应变速率在该阶段随时间递减,达到B点时应变速率最小,如果在该阶段卸载应变恢复为零;②稳定蠕变阶段(BC段),应变速率保持常量,如果在该阶段卸载,将保留一部分永久变形;③加速蠕变阶段(CD段),应变速率随时间增加,达D点时岩石发生破坏。

图3-36 索伦霍芬石灰岩在恒定应力下的蠕变曲线

(据Griggs,1939)

图3-37 典型蠕变曲线

蠕变的应变以下式表示:

εte(t)+ε(t)+ε(t) (3-38)

式中:εe为瞬时弹性应变;ε(t)、ε(t)和ε(t)分别为过渡蠕变、稳定蠕变和加速蠕变。

蠕变受温度的影响很大,温度升高使蠕变容易发生并使蠕变速率加大(图3-38)。

蠕变也受应力控制。图3-39是在不同载荷下雪花石膏的蠕变曲线。曲线表明:应力越大,稳定蠕变持续时间短,变形迅速进入加速蠕变阶段。

图3-38 不同温度条件下蠕变曲线

(据A.H.Sully,1949)

图3-39 不同载荷下雪花石膏的蠕变曲线

(据Griggs,1940)

围压不同蠕变量也有很大变化:随着围压增加蠕变变形减小。

3.松弛

松弛是指应变保持不变时随着时间应力逐渐减小的现象。

蠕变、松弛和应变速率共同说明时间对岩石变形的意义。在以百万年为时间单位的地质历史时期中,时间因素对岩石变形的影响是巨大的。

(五)外力作用方式

外力作用方式不同,岩石的力学行为也不同。在张力的作用下岩石容易发生脆性破裂,在同等环境的压缩条件下,岩石则显示延性(图3-40)。

图3-40 围压为300MPa、在不同温度条件下索伦霍芬石灰岩在拉伸或压缩下应力-应变曲线

(据Spencer,1981)

索伦霍芬石灰岩的拉伸和压缩实验表明:外力作用方式不同,灰岩的脆延性转化的条件不同,拉伸时脆性转化为延性所需温度远远大于压缩时的转化温度。在400℃、300MPa围压的压缩条件下,已发生脆延性转化,在此条件的拉伸情况下灰岩仍为脆性变形。



岩石力学性质的影响因素分析~

6.2.1 岩石成分对岩石力学性质的影响
影响岩石力学性质的因素很多,除受力条件和赋存环境等外在因素外,还有沉积岩石物质成分和结构构造等内在因素,因此,沉积岩的沉积特征与力学性质对岩石的变形机制和井下支护对策的研究具有重要意义。有关岩石成分和结构对岩石力学性质的影响研究,已取得了有意义的定性认识: 如石英含量越高,强度越大; 细颗粒岩石的强度较高; 抗压强度随着孔隙率的增加而减少等。近些年来,利用高倍显微镜、扫描电镜及 CT 技术研究岩土的微观、宏观结构,取得了一定成果。国内学者就软岩工程地质特征进行了研究,取得了有意义的研究成果。但从目前的研究现状看,岩石 ( 体) 力学中的沉积特征研究开展得还不够深入,沉积岩石学与力学研究和工程应用没有融为一体,因而没有真正发挥应有的作用。基于沉积岩石学特征,应用相关仪器,对不同岩性的岩石试样进行试验,建立沉积特征参数与宏观力学性质之间的定量关系,取得了有意义的研究成果。岩石中的裂隙,按成因分为原生裂隙与次生裂隙两大类。裂隙的存在,导致岩体的连续性被破坏,削弱岩体内的连接力,降低岩体的坚固性和稳定性。原生裂隙是指成岩过程中生成的裂隙,也叫成岩裂隙,如沉积岩的层理面、节理面、不整合面以及在成岩过程中因脱水密实而出现的与层理垂直或斜交的有一定分布规律的裂隙面。次生裂隙指岩层生成以后产生的,主要包括构造裂隙和矿压裂隙。构造裂隙是在岩体形成后,在地壳运动过程中产生的,在岩体内除了一些明显裂隙外,还有很多闭合的、很难分辨的细微裂隙。由于地质构造作用力的不同,可分为张裂隙和剪裂隙。由于岩体内存在着这些大大小小的裂隙,构成明显的弱面,所以在开采过程中,常会发生无预兆的冒顶事故。矿压裂隙是在开采过程中,由岩体内矿山压力所造成的。天然岩体总是被各种裂隙分割成块体,这些块体之间既相互联系又相互影响。岩石的非均质性、层理性、裂隙性,对岩石的物理力学性质有重大的影响,岩石物理力学性质的连续或不连续、均匀或不均匀、各向同性或各向异性,都取决于这些结构特征。
6.2.2 水对岩石力学性质的影响
地壳中的岩石,尤其是沉积岩,大部分都含有水分或溶液,有的含有油气。L.Müller( 1974) 曾指出过,岩体是两相介质,即由矿物 - 岩石固相物质和含于孔隙和裂隙内水的液相物质组成,它们都会降低岩石的弹性极限,提高韧性和延性,使岩石软化,易于变形,其变形与强度特征受到重要影响。
( 1) 兖州煤田
由表6.3 至表6.5 可以看出,随含水量增加,岩石的单轴抗压强度和弹性模量均急剧降低,但降低的速率受岩性控制,不完全相同,主要取决于岩石结构状况、结晶度和是否含有亲水性粘土矿物等因素。影响岩石力学性质的主要因素有岩石岩性、构造分布、水的作用等,通过上面的分析得出如下认识:
表6.3 兖州煤田自然含水状态下力学性质试验结果


注: 采样地点东滩煤矿。
不同岩性的岩石具有不同的形变速率和强度特征,岩石力学性质主要表现为,随着碎屑颗粒粒度由粗到细,即由砂岩到泥岩变化,碎屑岩的强度与刚度均迅速衰减。随构造发育程度的不同,区域岩体表现的力学性质存在很大差异,构造发育区,岩体的完整性遭到破坏,岩石被切割或破碎成带,力学强度降低; 非构造发育区,岩体完整,岩体力学强度高。水对岩石力学性质亦有重要影响,在干燥或较少含水量情况下,岩石在峰值强度后表现为脆性和剪切破坏,应力 - 应变曲线具有明显的应变软化特性; 随着含水量的增加,岩石单轴抗压强度和弹性模量均急剧降低,表现为塑性破坏,且应变软化特性不明显。另外,砂岩的孔隙度对力学性质影响也很明显 ( 表6.6,表6.7) ,同是细砂岩,当孔隙率分别为 2.3%、8.0%、11.4% 时,自然状态下的抗压强度分别为 796.0MPa、492.0MPa、158.0MPa; 同是中砂岩,当孔隙率分别为 4.4% 、12.7% 、15.7% 、17.8% 时,自然状态下的抗压强度分别为 700.0MPa、398.6MPa、539.0MPa、115.0MPa; 说明随着孔隙度的增高,岩体抗压强度有迅速减小的趋势。
表6.4 兖州煤田 3 煤层顶板岩样测试参数


注: 采样地点东滩煤矿。
表6.5 兖州煤田岩石物理力学性质 ( 一)


表6.6 兖州煤田岩石物理力学性质(二)


注:采样地点东滩煤矿。
表6.7 兖州煤田岩石物理力学性质(三)


注:采样地点东滩煤矿。
( 2) 龙固井田
巨野煤田龙固井田山西组 3 煤层顶底板砂岩含水层,统称为 3 砂。井田内有 60 孔揭露,砂岩厚 4.80~75.65m,平均 26.7m。以细砂岩为主,局部为中砂岩和粉砂岩,裂隙局部发育,充填有方解石脉。3 砂共发现漏水点 9 层次,漏水孔率为 15.0%,漏水点深711.28~ 905.36m。该层位 L - 2 和 L - 15 孔抽水 2 次,单位涌水量 0.00811~ 0.01509L / s·m,渗透系数 0.00993~ 0.02746m / d,水位标高 34.97~ 35.12m,矿化度 6.88~ 7.79g / L,水质类型为 SO4- K + Na 型,属弱富水的裂隙承压含水层。根据抽水试验,水位恢复缓慢,如 L -2 号孔抽水后 24h 恢复水位尚比静止水位低 4.74m,表明 3 砂径流不畅,补给条件差。3 砂是 3 煤层直接充水含水层。根据研究的需要,把龙固井田富水性分区划分为5 个级别: 极强、强、中等、弱、极弱。通过对研究区钻探、水文等资料进行分析,对研究区不同级别的富水性进行了圈定 ( 图6.3) 。由图6.3 可知: 龙固井田内总体富水性主要呈南北分布、东西分带的特点,井田大部分区域富水中等,约占井田的 1/2。其中,富水性比较弱的区域主要分布在井田的东南部,靠近邢庄断层,北部跨过陈庙断层的区域小面积出现; 井田富水性强的区域主要分布在井田东北部陈庙断层与田桥断层交叉区域以及井田北部靠近张楼断层的小块区域,总体来说,龙固井田 3 煤顶板富水性中等 - 偏强,影响了煤层顶板岩石力学的强度 ( 表6.8) ,降低了顶板稳定性。

图6.3 龙固井田 3 煤顶板砂岩富水性分区

表6.8 龙固井田3煤顶板岩石物理力学性质试验


续表


6.2.3 构造结构面对岩石力学性质的影响
对于不同岩性的岩石,破坏机制存在差异,软质岩石在单轴压缩条件下为剪张破坏,在一定侧压条件下为弱面剪切破坏和塑性破坏,并且随着侧压的增大,岩石应力 - 应变曲线由应变软化状态向近似应变硬化状态过渡,并伴有体积膨胀现象。中硬岩石在单轴压缩条件下为脆性张裂破坏,随着侧压的增加,岩石进入剪切破坏; 岩石应力 - 应变曲线表现出一定的应变软化特性。硬质岩石在侧压范围内均为脆性张裂破坏和剪切破坏,破坏时发出较大的声响和振动,岩石应力 - 应变曲线表现出明显的脆性和应变软化特性,说明岩性对岩石力学性质具有重要的控制作用。
煤矿开采实践证明,煤层顶板稳定性存在局部变化,与断层、褶皱活动相关,断层的存在可以改变顶板冒落的一般规律,使顶板沿断层切下,导致工作面突然冒顶和来压。无论是正断层还是逆断层,在断层下盘靠近断层面附近最易冒顶,当巷道掘进到断层区时,一般出现比较大的围岩变形,支护十分困难。顶板岩体中发育的小褶皱常使顶板条件恶化,由于挠曲滑动作用,褶皱的层理面上擦痕遍布,使顶板稳定性降低。
断层带附近煤岩体力学性质的变化特征与正断层的形成过程和特点密切相关 ( 图6.4) 。在断层的形成过程中断层面附近为一明显的应力集中带,其变形破裂也最明显,在该带煤岩层强度大幅度降低,远离断层,应力作用减小,变形破裂也变弱,因此平面上越靠近断层,煤层孔隙和裂隙越发育,煤岩体力学强度也越低 ( 图6.5) 。正断层形成的过程中,上盘为主动盘,断裂面形成后,上盘会因重力作用向下滑动,而产生次生压力,此外,正断层使断块在不规则断层面上活动或断块内小断块之间相互作用产生局部压力。正断层的这些特征势必导致上盘裂隙发育程度大于下盘,上、下盘相对滑动产生的次生应力不仅会使上盘的破坏程度大于下盘,而且会使伴生的剪裂隙和张裂隙进一步扭转,转化为张扭性裂隙。

图6.4 断层与煤层裂隙和孔隙率的关系

煤层顶板稳定性的局部变化与断层、褶皱的活动有关。研究表明 ( 图6.5) ,断层带附近煤岩体破碎,煤岩体中裂隙的发育程度随着与断层面距离的变小而增强,煤岩体力学强度越靠近断层越低。裂隙的力学性质向断层面方向由张性向张扭、压扭性再到张性转化,正断层附近宏、微观裂隙发育程度和影响宽度表现为上盘明显高于下盘,且断层对煤岩体力学强度影响宽度明显高于对宏、微观裂隙影响宽度,一般为落差的 2~4 倍。由于采动影响,破坏了岩体中原岩应力的平衡状态,引起采场周围岩体内的应力重分布,形成支承压力区和卸载区,随着工作面推进顶板沉积岩层经历了一个在煤壁前方支承压力作用下的压缩 ( 密) 变形和沿层面方向的剪切滑移变形,最后在采空空间沿层面产生拉张离层破坏的过程,最终导致煤层顶板失稳。

图6.5 断层附近煤岩体单轴抗压强度的变化L—距断层距离; H—断层落差

6.2.4 沉积结构面对岩石力学性质的影响
沉积结构面与成岩后所形成的构造结构面是有区别的,对岩体力学性质的影响也各不相同。沉积结构面分布广,延展好,相互间高度贯通,使沉积岩体具有许多特有的力学特征 ( 图6.6) 。所以研究沉积结构面对岩体力学性质的影响具有重要意义。

图6.6 不同结构类型岩体应力应变曲线( 据张倬元等,1994)

沉积结构面是沉积岩体特有的性质,由于沉积结构面的存在使沉积岩体力学性质呈各向异性。根据层理面上的强度特征将层理进一步分为弱面型与非弱面型。
1) 非弱面型层理是在水动力较强、变化不大,或者说是在持续较强的水动力条件下形成的,并保存在砂岩和粉砂岩中的沉积构造,如交错层理、水平层理、平行层理等。岩体受力变形过程中一般不会沿这些层理面破坏。
2) 弱面型层理是在水动力强弱交替的条件下形成的,当水动力弱时形成泥质岩、云母片、植物碎屑和炭质等定向排列而呈现层理,这类层理的细层之间粘结较弱,形成沉积弱面,如交错层理、砂纹层理、潮汐层理、互层层理和水平层理等,岩体受力变形过程中,岩体易产生垂直于沉积结构面的张性破坏或沿沉积弱面的剪切破坏。
层系或层系组界面、岩层面以及不整合面均为沉积弱面,对岩石 ( 体) 力学性质具有重要影响。如老顶砂岩与直接顶或煤层冲刷形成的接触面,由于砂岩与泥岩力学性质差异较大,岩性界面黏聚力差,砂体下直接顶泥岩层往往易离层破坏,因此在成岩作用过程中接触面附近常发育有较多的垂直接触面的原生裂隙,造成岩体的不连续性,对顶板稳定性影响很大。
沉积岩体中软弱夹层实质上是具有一定厚度的岩体软弱结构面,它与围岩相比,具有显著低的强度和显著高的压缩性,其抗压、抗剪和抗拉强度均低于围岩,在采动影响下软弱夹层易于沿层面脱落。
因沉积结构面受力作用的方式不同,沉积岩体变形破坏机制也不相同。
层理构造是沉积岩最基本的特征,沉积岩体中的层理面在地质上代表的是一种沉积环境向另一种沉积环境过渡的转换面,代表一个沉积间断,其形态具有多样性,层理面上往往有大量的植物碎屑、云母片等软弱成分的定向排列,在力学性质上属于一种弱结构面。层理越发育,其顶板的稳定性越差。B.A.布克林斯基用衰减函数描述岩体内部移动等值线,当考虑岩体分层性时,计算出的移动等值线不是平滑的而是出现折线形状,线的转折发生在两个岩性不同的接触面处。由于层理的存在使岩体力学性质呈各向异性,图6.9 展示了沉积岩体各向异性变形特征。在室内对层状岩石试件的实验结果表明,加载方向不同,岩石表现出不同的力学性质 ( 表6.9; 图6.7,图6.8) 。
表6.9 沉积结构面对岩体力学性质影响统计



图6.7 沉积结构面对陆源碎屑岩弹性模量影响曲线

由以上分析,总结出下面几点结论:
1) 垂直层理方向加载时的弹性模量比平行层理方向加载时的弹性模量低,这是因为层面间结合力较差,甚至有空隙,因此,垂直层理方向易被压缩,应变量大所致。

图6.8 沉积结构面对陆源碎屑岩抗压 ( A) 、抗拉 ( B) 强度影响曲线

2) 岩石的强度表现为平行层理方向加载时的抗拉强度大于垂直层理方向的抗拉强度,而平行层理方向加载时的抗压强度与凝聚力小于垂直层理方向的抗压强度与凝聚力。
3) 纵波速度和动弹性模量亦表现出垂直于层理方向比平行于层理方向低的特征,且各向异性指数表现为顶板泥岩明显大于老顶砂岩,这是由于顶板泥岩层面富集植物碎屑和碎片以及水平层理发育所致。
由此可知,由于沉积岩体中层面和层理的存在,导致沉积岩体的力学性质明显地表现为各向异性或横观同性特征 ( 图6.9) 。

图6.9 各向异性变形测试结果( 据郭志,1981)

要说到内在因素,那肯定得从组成岩石的主要矿物的晶体结构以及岩石的结构(各矿物接触方式)特征方面分析。

岩石有哪些物理力学性质?影响其工程性质的因素有哪些?
答:1. 矿物成分:岩石的物理力学性质直接受到其矿物成分的影响。例如,石英岩的抗压强度远高于大理岩,这是因为石英比方解石更坚硬。即使岩类相同、结构和构造也相似,矿物成分的不同也能导致岩石性质的显著差异。在评估岩石的工程地质性质时,应特别注意可能削弱岩石强度和稳定性的因素,如花岗岩中黑云母含量...

分析影响岩石工程地质性质的因素。
答:【答案】:1. 地质特征:岩石的矿物成分、结构、构造及成因等是影响岩石工程地质性质的基本因素。2. 外部因素影响:岩石形成后,会受到水的作用和风化作用等外部因素的影响。3. 矿物成分的影响:矿物成分直接影响岩石的强度,不同矿物组合可能对岩石的强度产生增强或减弱的效果。4. 结构的影响:包括胶结...

岩块的结构是怎样影响岩块的力学性质的?
答:6.水分含量: 岩石中的水分含量也是一个重要的影响因素。水分的存在可能导致岩石发生膨胀和收缩,从而影响其力学性质。7.温度: 温度变化也会对岩石的力学性质产生影响。温度的升高可能导致岩石膨胀,而降低可能导致收缩,这可能引起岩石的开裂或产生热应力。岩石的力学性质是由其复杂的内部结构和组成因素相互...

影响岩石工程性质的因素有哪些?
答:2. 结构影响:晶粒间的质点距离通常大于晶体内部的质点距离,因此颗粒间的连接决定了岩石的抗力。3. 水的影响:在岩体中,重力水和结合水通过多种作用改变岩体的结构和成分,包括润滑作用、冻融作用、潜蚀作用、水解作用和联接作用。4. 作用力特点:力的性质、应力水平、围压大小、应力增加速率、应力持续...

影响岩石工程地质性质的因素有哪些
答:B,结构的影响.一般情况下,由于晶粒间质点的平均距离要比晶体内部质点的平均距离大得多,彼此吸引的牢固程度低,因此颗粒间的联接决定岩石的抵抗作用力.C,水的影响.在岩体中对力学性质产生重要影响的主要是重力水和结合水,主要通过多种作用改变岩体的结构和成分:润滑作用,冻融作用,潜蚀作用,水解作用,联接...

影响岩石性质的因素有哪些
答:3. 结构与构造:岩石的结构和构造直接影响其导电性和波速。裂隙的存在导致岩石对电流场和弹性波场的响应表现出明显的各向异性。4. 年代:不同年代的相同岩石类型可能具有不同的物理性质,这是由于长期的压实作用和构造活动导致的。5. 环境因素:温度和压力是影响岩石物理参数的关键环境参数。在不同温度和...

应变速率对岩石力学性质的影响主要有哪些
答:围压、温度、孔隙流体压力、应变速率。1、围压,围压增加,增加岩石的强度,增加岩石的韧性。2、温度,温度升高,降低岩石的强度;增加岩石的韧性。3、孔隙流体压力,孔隙流体压力增加,降低岩石的强度,增加岩石的脆性。4、应变速率,应变速率降低,岩石的强度降低,韧性增加,易发生韧性变形。

具体说明影响岩石工程性质的因素主要有哪些
答:1. 物质成分:岩石的物质成分是影响其工程性质的重要因素,包括颗粒的种类、大小、形状和物理性质等。2. 结构:岩石的结构指的是颗粒之间的联结方式,如晶粒结构、层状结构、碎裂结构等,这些结构决定了岩石的力学性能和变形能力。3. 构造:岩石的构造涉及到成生环境、地质历史以及后续的地质作用,如变质...

影响岩石工程性质的主要因素是什么
答:主要因素:矿物成分、结构、构造、水、风化作用。1.矿物成分 岩石是由矿物组成的,岩石的矿物成分对岩石的物理力学性质产生直接的影响。例如,石英岩的抗压强度比大理岩的要高得多,这是因为石英的强度比方解石的强度高的缘故,由此可见,尽管岩类相同,结构和构造也相同,如果矿物成分不同,岩石的物理力学...

简述影响岩石工程性质的因素。
答:1. 岩石的组成成分:岩石的基本组成矿物是影响其性质的关键因素。2. 岩石的结构:岩石的结构特征主要分为结晶结合和胶结结合两大类,这些结构特征对岩石的性质有着显著影响。3. 岩石的构造:岩石的构造影响主要体现在矿物成分在岩石中的分布不均匀性和结构的不连续性,这使得岩石的强度表现出各向异性。4...