球谐函数的基础数学理论

作者&投稿:铎伊 (若有异议请与网页底部的电邮联系)
球谐函数在图形学光照计算等领域有着重要应用,因为目前在实际工作中接触较少,所以对其的理解仅仅停留在表面,本着越是基础的东西,其重要性越高的想法,特此开篇文章对其背后的数学理论进行拆解,拆解过程参考了大量其他同学的工作,相应链接在文末的参考文献中有列出,引用过程中如有表述不清晰的内容,可以通过原文辅助阅读。

调和函数指的是一种特殊的二阶连续可导函数(简称C2,在某个定义域存在二阶导数,且二阶导数连续),数学符号用 表达,其中 是 (表示n维实数域)的一个开子集(相当于一维数据空间中的开区间),其特殊在于需要满足拉普拉斯方程(下面有介绍),用(笛卡尔坐标系下)数学表达式来描述的话,就是对于任意 ,需要满足如下的二阶偏微分方程:

这里来回顾一下微分方程的相关知识,单个变量下,也就是一元变量情况下,函数与函数各阶导数组成的微分方程叫做常微分方程:

多元函数而言,函数以及函数对各个自变量的各阶偏导数组成的微分方程叫做偏微分方程:

这个公式也经常以如下的形式出现( 称为拉普拉斯算子, 称为向量微分算子,也就是nabla算子):

其中 叫做拉普拉斯算子,光看定义太抽象,我们来举个例子吧,下面两个函数都是二元的调和函数:

拉普拉斯方程也被称为调和方程、位势方程,这是一种偏微分方程,因为其可以用势函数的形式来描述电磁场、引力场、流场(统称为保守场或者有势场)的性质而被广泛应用。

笛卡尔坐标系下的表述形式前面已经写过了,下面给出球面坐标系下的拉普拉斯方程表述形式:

这个方程也常用如下的简化形式来代替:

或者

其中div指的是向量场(指的是空间中的每一点都有一个对应的带长度的向量)的散度(divergence),grad表示的是标量场的梯度(gradient)。

散度是向量分析中常用的向量算子,用于实现向量场到标量场的转换映射,也就是说,经过散度算子处理后,得到的是一个标量场(每一点有一个不带方向的数值)。以静电场为例,空间中的电场强度是一个向量场,电场线正出负归,在正电荷附近,对应的散度为正值,且电荷带电量越大,散度越大,负电荷附近则反之,其散度为负值,且电荷带电量越大,散度绝对值越大。更为通用的概括是,散度可以看成是向量场在某一点的通量密度,当散度大于0的时候,就表示该点有流量留出,此时这一点可以被称为源点,当散度小于0的时候,表示此点有流量流入,此时此点被称为汇点,散度为0,表示该点无流入也无流出,如果整个向量场的散度都是0,那么这个向量场可以称为无源场。

对于某个向量场 而言,其散度可以通过如下公式求得:

梯度是对多元函数的导数的一种描述,单元函数(只有一个自变量)的导数是标量值函数,而多元(多个自变量)函数的导数则是一个向量值函数,这里多元函数的导数,我们也称为多元函数的梯度,多元函数f在点P处的梯度指的是以f在P处的偏微分作为分量的向量,如一个三维空间函数 ,其梯度函数可以用如下的形式来表述:

单元函数的导数对应的是函数在某一点切线的斜率,对应到梯度上,如果多元函数在某点P的梯度不为0的话,那么计算出来的梯度方向指的是这个函数在P点处增长最快的方向(超平面的切线),而梯度的长度则是函数在此点处的增长率(超平面的斜率)。

举个例子,如果某个房间内的温度用一个函数来表示,那么这个函数在三维空间中的梯度就对应于房间中某点处温度上升最快的方向,而其长度则对应于温度增长率。

可以看到,一个多元函数的标量场,经过梯度转化后,得到的是一个向量场。

从调和函数的定义我们可以看到,所谓的调和函数,实际上就是拉普拉斯方程的解,而我们日常所说的球谐函数(Spherical Harmonics Function)实际上就是拉普拉斯方程在球坐标系空间下的解。

拉普拉斯方程是一个偏微分方程,而解偏微分方程常用的策略是分离变量法,即将偏微分方程分解成几个常微分方程进行求解,下面我们通过将半径跟角度进行分离来进行求解。

设 ,将之代入前面的拉普拉斯方程,可以得到:

上面公式乘上 之后可以得到:

对于上面公式中后面的等式,我们继续使用分离变量法,令(这里是假设Y具有可以分离的形式,当然这个假设不是必然成立的,只是为了简化计算而给出的,只有一些特殊的函数才具有这种假设的可分离的形式) ,代入前面公式可以得到:

简化后,令左右两边均等于 ,可以得到:

一个先验知识是m是一个复数常量(怎么得到的?),且由于 是一个周期函数,其周期可以整除 ,因此m就会是一个整数,而 则是复数指数 的线性组合,Y的常规解出现在极点,也就是 的时候,而在上面的第二个方程中求解 时的常规状态出现在Sturm-Liouville problem的边界点上,在这个边界点中会将 ,其中l是非负整数,且 ,此外,将上面公式中的 用t来替代,就能够得到勒让德公式(Legendre equation),而勒让德公式的解就是伴随勒让德多项式 的倍数。

对于满足前面假设的Y,对于给定的 ,我们总共有 个独立解,这些角度上的解可以表示为三角函数的乘积,这里可以用复数指数与伴随勒让德多项式来表示:

其中这个解需要满足:

上述公式中的 就被称为一个m阶(order)l度(degree)的球谐函数, 就是一个伴随勒让德多项式,N是一个归一化的常量, 则代表着球上的经纬度

所有的球谐函数组成了一组正交基,所谓的正交基指的是,两两基函数相乘的积分只有当两个基函数是同一个基函数的情况下结果为1,否则为0。

上图给出了不同的SH基函数的几何形状展示,这个图是通过以方向为自变量,到球心的距离作为因变量绘制的。

而其他函数都可以通过使用不同系数来对SH基函数进行线性组合来实现近似模拟,这个过程有点像是周期函数的傅里叶展开。

未完待续……

[1] Rendering-球谐光照推导及应用
[2] 调和函数
[3] 拉普拉斯方程
[4] 散度
[5] 梯度
[6] Spherical harmonics
[7]. Laplace's equation

~

如何用数学公式表示简谐波的波函数?
答:简谐波的波函数通常用数学公式表示为:y(x,t)=A*sin(ωx+φ)其中,y(x,t)是波函数,表示在时间t和位置x处的波的振幅。A是振幅,表示波的最大高度。ω是角频率,表示波的频率。φ是初相,表示波的起始位置。这个公式是基于傅里叶分析的结果,它将复杂的波形分解为一系列简单的正弦和余弦波。

简谐振动公式是什么?
答:位移x(t)是通过振幅A和一个余弦函数来表示的,角频率ω决定了振动的频率,相位常数φ则决定了振动的初始相位。简谐振动的公式可以应用于很多物理现象,如弹簧振子、摆锤、电路中的交流电等。它是一种重要的振动形式,具有许多重要的应用和理论意义。

简谐振动公式是什么?
答:简谐振动公式的例题 问题:一个质点以简谐振动的方式在平衡位置附近振动,其振幅为 0.1 m,角频率为 5 rad/s。求:a) 质点的位移函数;b) 质点在 t = 2 s 时的位移和速度。解答:a) 位移函数的一般形式为 x(t) = A * cos(ωt + φ),其中 A 是振幅,ω 是角频率,t 是时间,φ...

奇函数和奇谐波函数在数学中起到什么样的作用?
答:通信工程等领域有着广泛的应用。例如,奇谐波函数可以用于分析线性时不变系统的响应、设计滤波器等。此外,奇谐波函数还与傅里叶变换、拉普拉斯变换等数学工具密切相关。总之,奇函数和奇谐波函数在数学中起到了非常重要的作用。它们不仅在理论研究中有着广泛的应用,而且在实际应用中也发挥着重要作用。

插述 数学杂记(七)
答:当一个周期函数是奇函数时,它的傅里叶级数的构造异常有趣。一个重要的事实是,奇函数的级数中只包含正弦分量,仿佛余弦的角色被神秘地剔除。即使在引入直流成分后,函数的奇偶性会改变,但傅里叶分解中依然保留着这一独特的性质。半波对称:奇谐函数的定义与特性走进半波对称的殿堂 当我们谈论半波...

为什么正负对称的波形无偶次谐波
答:理论上说,应该是奇谐函数只含有奇次谐波,偶谐函数只含有偶次谐波。所谓奇谐函数,就是将信号波形沿着时间轴平移半个周期,再相对于时间轴翻转,波形不变的函数。而偶谐函数是指,将信号波形沿着时间轴平移半个周期,波形不变的函数。

大学物理,振动方程的?
答:早在20世纪90年代,以耶鲁大学伊戈尔·弗伦克尔(Igor Frenkel)、罗格斯大学詹姆士·莱彼斯基(James Lepowsky)和瑞典隆德大学的阿恩·摩尔曼(Arne Meurman)这三位数学家的工作为基础,博赫兹(上文中提到的魔群月光的证实者)通过一个特定的弦理论模型让麦凯的发现有了实在的意义。在这个弦理论模型中,J函数和魔群同时起...

数学思想方法的基础概念
答:中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是...爱因斯坦的空间概念是相对论诞生50年前德国数学家黎曼为他准备好的概念。在生物学中,数学使生物学从经验科学上升为理论科学,由定性科学转变为定量科学。它们...

数学思想方法有哪几种?
答:很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。 数形结合思想 数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决...

什么叫复振幅?
答:复振幅是指在信号与系统中,对周期信号f(t)进行指数傅里叶变换,得到的系数是复振幅,描述复振幅和n次谐波频率之间的关系的图形是复数振幅谱图。在复数振幅谱图中,负频率的出现全是数学运算的结果,并无任何物理意义。