地球的资料 有关地球的资料。

作者&投稿:花晨 (若有异议请与网页底部的电邮联系)
一、地球的自转运动

(一)自转及其方向 地球自转是一种旋转运动,就是地球自身以地轴为轴心所作的旋转运动。自转方向,在北极上空看是反时针方向,在南极上空看是顺时针方向。这样的旋转方向,根据日出于东的概念,称为向东运动,即地球自转方向是自西向东的。

(二)自转周期与自转速度 地球约24小时自转一周360°,每小时转15°,这是地球自转角速度。地球上的一切质点随地球自转作圆周运动就是自转线速度,它因纬度和海拔高度而不同。由于纬线圈周长自赤道向两极逐渐减小,纬度愈高,圆圈周长愈短,自转线速度愈慢;反之愈快。纬度相同,海拔高度愈高,自转线速度愈快,反之愈慢。

二、地球自转结果及其地理意义

(一)昼夜交替 由于地球自转,产生昼夜交替现象。昼半球与夜半球之间的界线,称为晨昏线。地球向东自转,昼半球通过晨昏线进入夜半球,夜半球通过晨昏线进入昼半球。昼夜交替,调节了地球表面大气温度,产生气温的日变化;对生物界、农作物生长有利;为人类生产生活提供了自然周期。

(二)水平运动物体产生偏向 地球自西向东自转运动,使地球上的所有水平运动着的物体产生偏向。在北半球,物体沿着前进方向的右侧偏;在南半球,物体沿着前进方向的左侧偏。根据惯性原理,物体运动总是力图保持原来方向和速度。如图所示,在北半球,当水平运动质点向北沿经线取a1b1方向前进,经过一段时间后,经线从s1转至s2位置。沿经线运动的质点为保持其原来方向,必然取a2b2方向前进,此时在s2位置上来看,运动质点已离开经线方向而向右偏了。同样道理,在北半球沿纬线运动的质点也沿着前进方向而向右偏。在南半球向左偏。

地转偏向力大小主要与质点运动速度和纬度有关,即水平运动物体速度愈快、纬度愈高,地转偏向力愈大;反之,地转偏向力愈小。在赤道上,纬度为0°,经线相互平行,所以水平运动物体不产生偏向。在其他纬度都产生偏向。

由于地球自转产生偏向力,从而引起大气运动,大洋中的洋流,大陆上的河水流动等都产生偏向。例如,北半球吹北风,受地转偏向力影响而向右偏,变为东北风。这些变化,对地表热量与水分的交换、全球水热平衡等,都起着巨大的作用。

(三)为时间的确定提供了依据日月星辰每天东升西落,是地球自转引起的周期现象,为时间的正确表示提供了基本长度单位,这个单位称为“日”或“天”。太阳东升西落过程中,当其位于当地正南方或正北方①时刻称为中天。太阳连续两次通过某地(点)中天的时间间隔就是一天。有了中天时刻就可以用钟表来确定时间,即一天分为24小时,白天正午称上中天,定为12时;午夜12时称下中天,即24时或0时。

由于地球不停地向东自转,中天时刻因经度而不同,位置愈偏东,中天时刻愈早。例如,当上海(东经121°)是中天时刻,日本东京(东经139°30′)中天时刻已过,太阳已在东京的偏西方向,而拉萨则尚未到达中天时刻,太阳在拉萨(东经91°)的偏东方向。所以,经线圈又称为时圈。目前,世界上表示时刻的方法有以下三种:

1.地方时刻 以本地中天时刻作为时刻标准,称为地方时刻。优点是,适合本地使用,太阳位于本地正南方(或正北方)的时刻定为正午12时,但它只适合本地和经度相同的各地。地球在24小时内自转360°,每小时转15°,每4分钟转1°。这样,经度相差15°,地方时差1小时;经度相差1°,地方时差4分钟。例如当武汉(东经114°)地方时刻是正午12时,南京(东经118°)是12时16分,重庆(东经106°30′)是11时30分。旅行者从当地出发,向东或向西旅行,都要根据经度差相应地拨快或拨慢自己手表时针,所以使用地方时刻很不方便。

2.标准时 根据经度相差15°时差1小时原理,将全世界划分24个时区,以每一时区中央经线的地方时刻作为该时区的时刻标准,称为标准时。划分方法是:以0°经线作为中央经线的时区叫0时区,包括东经7°30′到西经7°30′的范围;以东经15°经线为中央经线,包括7°30′至22°30′的范围叫东1区,依次类推直到东12区。同样,以西经15°为中央经线的时区,包括西经7°30′至东经22°30′的范围叫西1区,依次类推直至西12区。两个相邻时区,标准时差1小时,并且由西向东递增,时区差数等于小时差数。由于东12区与西12区共同使用180°经线为中央经线,所以这两个时区是半时区,这两个相邻时区相差不是1小时,而是24小时,180°经线也就成为日界线。日界线是地球上新的一天的起点和终点。地球上日期的更替,都从这条线上开始。为了照顾180°经线附近一些地区和国家使用日期方便,日界线避免通过陆地,因此它不是一条直线,而有几处曲折。详见图1-16。

3.世界时为适应科学技术发展需要,例如天文、气象、发射运载火箭试验等,需要有共同遵守的时刻标准,国际规定以0时区标准时刻为世界时标准。由于0时区中央经线即本初子午线,所以世界时又称格林尼治时。

我国采用的北京时,是以东八区中央经线(东经120°)中天时刻作为全国通用的标准时(北京位于东经116°,属于东八区)。

三、地球的公转运动

(一)公转及其方向 地球绕太阳运动,称为公转运

动。地球公转是按一定路线进行的,这路线叫轨道,所以公转运动又叫轨道运动。地球绕日轨道不是正圆,而是近似正圆的椭圆,太阳位于椭圆两个焦点之一,所以日地距离也有变化。根据地球绕太阳运行周期,每年1月初地球通过近日点,日地距离是14708万公里;7月初地球通过远日点。日地距离是15192万公里。日地平均距离大约是15000万公里。地球公转的方向与地球自转方向相同——自西向东的回转方向。

(二)公转周期与公转速度 地球绕日轨道长度是94000万公里。走完全程的时间是365.2422日或365日5时48分46秒,称为一个回归年。地球在轨道上的角速度大致每天向东推进1°。地球在轨道上的公转线速度,平均每小时108000公里,每分钟1800公里,每秒钟29.78公里(约等于30公里)。由于日地距离有变化,地球到太阳的连线称为向径。

根据开普勒①第二定律:向径在单位时间内扫过的面积必定相等。因此地球在近日点公转速度最快,每秒大约是30.3公里远日点公转速度最慢,每秒大约是29.3公里。

(三)黄赤交角概念 宇宙本来没有中心,但是为了研究方便,假想以地球为中心,任意长为半径,得出“天球”概念。在这个天球上,把地球赤道面无限延长即为天赤道;把地球公转轨道面无限延长得出黄道面。由于黄道面与天赤道面二者不在同一个平面上,现在两者交角大约是23°26′,这就是黄赤交角。由于地轴垂直于地球赤道(也垂直于天赤道),所以地轴与轨道平面斜交,其交角是90°-23°26′=66°34′。地球绕轴自转的同时,以地轴与轨道平面始终保持66°。34′倾角作公转运动,即地轴与公转轨道面是倾斜的。

天赤道与黄道①这两个大圆相交的两点,分别称为春分点和秋分点,合称二分点;黄道与天球相交的两点,位于天赤道平面以北的那一点,叫夏至点,位于天赤道平面以南的那一点,叫冬至点。

四、公转结果及其地理意义

由于黄赤交角与地轴对轨道平面倾角的存在,地球在绕太阳运动过程中,产生以下结果,在地理上具有十分重要的意义。

(一)太阳直射点往返移动与正午太阳高度变化 如前所说,地球表面是曲面,太阳光射达地表时,受到直射的只有一点。由于地球公转并有23°26′的黄赤交角,所以太阳直射点只在地球上的南北回归线之间,并以一年为周期南北往返移动:冬至(12月22日前后)这一天,太阳直射在地球上的南纬23°26′,冬至以后太阳直射点逐渐移向赤道,南纬23°26′是太阳直射南半球最南位置,所以南纬23°26′这条纬线称为南回归线;夏至(6月22日前后)这一天,太阳直射在地球上的北纬23°26′,夏至以后太阳直射点移向赤道,北纬23°26′是太阳直射北半球最北位置,所以北纬23°26′称北回归线;春分(3月21日前后)、秋分(9月23日前后),太阳直射在地球赤道上。地球上,只有南北回归线及其之间的纬度范围有太阳直射的机会。

太阳光线与当地地平交角最大时刻,称为正午太阳高度。太阳直射点纬度上的正午太阳高度是90°,随着地球公转,太阳直射点往返移动,正午太阳高度产生季节变化。

正午太阳高度大小,与纬度密切相关,是决定地表获得太阳热能多少和引起地球上的气候因纬度而不同的主要因素。

(二)昼夜长短有变化 由于地轴与轨道面倾斜,地球绕太阳运动过程中,有一段时间地球北极朝向太阳,由于黄赤交角是23°26′,夏至日太阳直射在北回归线上时,晨昏线通过南北纬66°34′纬线圈,图1-18所示,北半球纬度愈高昼弧愈长,夜弧愈短,至北纬66°34′及其以北完全处于昼半球,称为极昼现象;南半球纬度愈高夜弧愈长,昼弧愈短,至南纬66°34′及其以南地区完全处于夜半球,称为极夜现象。另有一段时间,地球南极朝向太阳,冬至日太阳直射在南回归线上时,情况正好与前面所说夏至日相反。南北纬66°34′纬线因有极昼或极夜现象,所以分别称为南极圈与北极圈。随着地球公转,晨昏线分割地球状况有变化,南北半球昼弧与夜弧不断发生变化,所以白天与黑夜长短也相应发生变化。春、秋分日,太阳直射赤道,晨昏线通过地球两极,全球各地昼弧与夜弧等长,所以春秋分日全球各地昼夜等长(见图1-18)。由于黄道与天赤道相交于两点,在交点上二个平面重合,所以赤道上全年昼夜等长。

(三)四季的形成 以北半球为例,从春分到夏至,正午太阳高度逐渐增大,日照时间逐日延长,地表接受太阳热能相应逐步增多,气温相应逐步升高,这就是夏季。从秋分到冬至,北半球正午太阳高度逐渐减小,日照时间逐日缩短,地表获得太阳热能日益减少,气温相应下降,这就是冬季。南半球相反。从夏季到冬季,又从冬季到夏季,是随着地球公转而逐步变化的,其间存在着过渡季节,这就是春秋两季,从而在地球上形成以一年为周期的四季交替。不过,地球上并非到处都有四季现象,如果不考虑其他因素的影响,地球上以中纬度地区四季变化最明显。这是由于中纬度地区正午太阳高度、昼夜长短变化既明显而又适中的缘故。

(四)五带的划分 地球绕太阳运动,太阳直射点只是在南北回归线之间移动,并有两次直射机会,正午太阳高度只有在南北回归线及其之间有90°,所以南北回归线之间获得太阳热能最多,气温最高,形成热带;南北极圈至南北极,有极昼和极夜现象。极昼期间日照虽长,但太阳高度很低,热能损失多,气温仍然很低,形成两个寒带——南寒带、北寒带;介于热带与寒带之间,获得太阳热能多于寒带而少于热带,形成两个温带——南温带与北温带,从而在地球上形成五个气候带。但应说明,由于海陆分布、大气环流等因素的影响,地球上实际出现的气候带远比上面所讲的五带要复杂得多。

五.地球的能源

统计数据表明,目前世界上75%的能源来自于矿物燃料的燃烧,而这些燃烧是人类最大的健康污染源,也是地球温室效应的罪魁祸首。火力发电、交通运输和各种加热过程都需要燃烧大量的煤炭、石油、柴油、汽油和木制品,在燃烧过程中,这些矿物燃料会排放大量的有害气体颗粒,导致人类呼吸系统障碍和癌症。从全球角度来看,目前全球面临的最严重的环境问题之一,就是温室气体在大气当中的含量持续增加,这是导致全球气候变化的最重要的原因。联合国希望世界各国花大力气进行可再生能源,包括太阳能、风能、地热能源、生物能源和水利资源的开发和应用,同时加大对现有矿物能源进行技术更新和改造,以减少有害气体的排放。
科学家研究发现,在地表面几千米处存在着温度逾千度的灼热岩石层,可以设想,火山爆发喷发出的火红岩浆就源于此。科学家称这种热能为岩石地热资源。如果能把灼热岩石中的热能取出变成电能,石头也能发电。在此之前,科学家曾发明了利用水文地热资源进行发电的方法,即把地下蒸汽或温泉的能量转化为电能,这种电能已占总发电量的0.3%。如何把地下岩石中的热能取出来发电,是许多能源专家长期以来的梦想。

英荷“罗雅·达奇舍”石油公司正计划把这一梦想变成现实。不久前,该公司在萨尔瓦多组建了一个地热财团,准备利用先进的工艺技术解决岩石地热资源利用问题。根据这家财团的岩石地热开发方案,工程技术人员将利用先进的勘探技术在萨尔瓦多寻找地下灼热的岩石,然后通过钻探技术建立水压注入系统。利用这个系统,地面冷水能够深入地下,并通过灼热岩石转化为热水或过热蒸汽返回地面,从而获取热能。在地面上再将热能转化为电能。按“罗雅·达奇舍”石油公司专家核算,他们能够建造功率为2000-5000千瓦的岩石地热发电站。

“罗雅·达奇舍”石油公司技术部经理达尔利说:“萨尔瓦多方案”是他们公司地热利用宏伟计划的一部分,公司计划在未来五年内投资5-10亿美元扩大岩石地热开采规模,让地下灼热的岩石在不远的将来成为人类主要能源之一。

太阳能

科学家预测,在10至15年内,地球上阳光充足地区将会出现大量太阳能热电厂,向世界各国提供洁净电能。

20世纪初,研究人员就开始在屋顶采用槽式聚光镜获取能源:先将黑色管子里的油加热到400摄氏度,当油流过热交换器时,将水蒸发成蒸汽,然后用蒸汽来推动涡轮发电机。随着时间的流逝,在研究人员不断努力下,太阳能发电技术获得巨大改进。目前,槽式太阳能发电的转换效率已经达到15%,也就是说1/6的入射光能可以转换成电能,而太阳能电池板的转换效率只能达到10%。80年代末,美国研究人员在加利福尼亚建成一座功率为354兆瓦的太阳能热电站,它相当于一座中型热电站。但是,槽式热电站的劣势是占地面积大,它需要一条长 150米 ,宽 6米 的槽,其发电成本是煤炭、石油或天然气的3倍。

槽式发电并非是太阳能发电的唯一途径,有工程技术人员采用了别的方案,如塔式发电。他们采用上百个单反射镜(定日镜)从东向西跟踪太阳,反射镜将太阳光束照射到塔顶的热交换器上,交换器把吸收到的热导入盐溶液,加热后的盐溶液被泵到塔底,产生推动涡轮机的蒸汽。利用盐溶液的方法虽说不错,但溶液对管道和容器会产生腐蚀作用,为此,科学家准备用空气替代盐溶液,用空气来传导热能。为解决空气导热性能差的缺陷,研究人员研制出一种“容积接收器”,其原理类似吸水海绵,可将空气加热至1200摄氏度。当热空气通过该接收系统时,系统吸掉空气中的大部分热量,并将加热后的空气直接鼓入涡轮机,推动涡轮机发电。该方案将来是否会取代槽式发电方案,目前还没有定论。从理论上说,塔式热电站的太阳能利用率可以达到25%。重要的是塔式热电站还存在一定的技术问题,而槽式发电在技术上已经成熟。

去年9月,西班牙政府通过一项新的法令,将原来每度电价从3欧分提高到15欧分。为此,西班牙计划于2004年建造一座欧洲最大的太阳能槽式热电站。为提高太阳能的利用率,研究人员将吸附管内的油换成水,这样既可以节省昂贵的油,还可以将水直接蒸发。但在用水代替油的技术试验成功之前,吸附管内仍以油作为热载体。从目前进展情况看,该技术有可能在5年内实现,届时太阳能的利用率有望提高到20%以上。除成本低于太阳能电池板外,太阳能热电站在太阳下山后仍能靠白天存储的热能来发电。存储热量需要储油罐或装载盐溶液的容器,这就要求有大的场地。将来肯定会有比上述热载体更好的介质,发现它们只是时间问题。总之,研究人员研究目标明确,近几十年内大型太阳能热电站将为人们提供若干个百分点的电能。

太阳能发电前景喜人,从目前看,太阳能发出的电每度为15欧分,尽管它的价格只是太阳能电池板发电的1/4,但它还是比用化石燃料发出的电要高,没有可靠的财政资助难以维持。专家们倒是持乐观态度,他们认为,10至15年后,太阳能热电站发出的电可以降至5至7欧分,可形成与传统发电展开竞争的态势。

来自二氧化碳的能源

前不久,日本德岛工业技术中心的纳卡米希·亚马萨基在美国新泽西州的一次化学工业会议上宣布,他找到了一种用二氧化碳在比较低的温度和压力下,生产出较重的碳氢化合物(例如有三个碳原子链的丙烷和有四个碳原子链的丁烷)的方法。由于汽油就是一类长链碳氢化合物,他的报告引起了很大轰动。

虽然亚马萨基的研究还需要进行严格鉴定,但如果他能用二氧化碳生产更重的有5~12个碳原子长链的碳氢化合物,就有可能用二氧化碳生产出汽油。以前,许多科学家试图用碳和氢混合生产碳氢化合物,但结果都不理想。因为这种实验要在很高的温度下进行,而且产量少得可怜。

现在,亚马萨基把温室气体二氧化碳作为碳原子源,把盐酸作为氢原子源来生产碳氢化合物。他将发电厂排出的二氧化碳气体引入反应罐,并在反应罐中进行加压和加热,温度约为 300摄氏度 ,压力达100个大气压。对生产碳氢化合物来说,这样的温度和压力是非常低的,然后将二氧化碳和盐酸混合,此时的加热加压条件还不能得到碳氢化合物,于是亚马萨基利用铁粉作催化剂。目前,他用这种技术已生产出相当多的甲烷、乙烷、丙烷和丁烷,这些碳氢化合物在冷却时以气态形式排出,如果能改进催化剂的性能,就有希望生产出像汽油这类碳链更长的碳氢化合物,成为非常有用的燃料。

但如果这种技术不能生产更有价值的长链碳氢化合物,例如在室温下呈液态的石油,它就不可能和现在的生物反应器相竞争,因为喜欢吃二氧化碳的细菌等微生物有一种特殊的才能,可使二氧化碳和氢产生碳氢化合物,能在生物反应器中产生甲烷。

宇宙能源

一位量子物理学家曾这样描述“零点能”:“在自然界,完全真空就是没有任何东西,但真空中实际上是充满着忽隐忽现的粒子,它们的状态变化十分迅速,以至于无法看到。即使是在绝对零度的情况下,真空也在向四面八方散发能量。”顾名思义,“零点能”就是物质在绝对温度为零度下在真空中产生的能量。

为什么在真空中会存在“零点能”呢?著名物理学家海森伯提出了“测不准原理”,他认为“不可能同时知道同一粒子的位置和动量”。科学家们说,即使在粒子不再有任何热运动的时候,它们仍会继续抖动,能量的情形也是如此。这就意味着即使是在真空中,能量还会继续存在,由于能量和质量是等效的,真空能量就会导致粒子一会儿存在、一会儿消失,能量也就被科学家称为“起伏”的状态中诞生。

从理论上讲,任何体积的真空都可能包含着无数的“起伏”,因而也就含有无数的能量。

早在1948年,荷兰物理学家亨德里克·卡西米尔就曾设计出探测“零点能”的方法。

1998年,美国洛斯阿拉莫斯国家实验室和奥斯汀高能物理研究所的科学家们,用原子显微镜测出了“零点能”。科学家们宣称,宇宙空间是广袤无垠而又高度真空的,真空“起伏”蕴含着巨大能量。

也许,在21世纪,科学家将会给人类带来惊喜,宇宙空间将成为人类新的“能源基地”。可以说,宇宙将成为人类的“新油田”,会有无数的“钻井平台”漂浮在宇宙中,“钻取”真空中取之不尽的“零点能”,为人类未来生存和可持续发展提供新动力。

六.地球的简介

赤道是通过地球中心垂直于地轴的平面和地球表面相交的大圆圈,它
像一条金色的腰带,把地球拦腰缚住,并把地球平分为南北两个半球。赤道是南北纬度的起点( 即零度纬线 ) ,也是地球上最长的纬线圈 ,全长40 075.24千米(相当于8万多华里),所以住在赤道上的人能够"坐地日行8万里"。一架时速为800千米的喷气式飞机,要用50小时才能飞完这段距离。

第二次世界大战结束后,美国空军利用先进的航空测量技术,又作了一次更为精确的测量。结果是12713756米。20世纪60年代初,科学家借助于人造卫星和电子计算机,算出了极直径是12713884米。 1976年,国际天文学家联合会宣布了地球赤道半径的数字,根据这个数字推算,极直径应该是12713510米。这个数字以后还会不会再次修正呢?让我们拭目以待吧!
地球南北极之间的直径是12630824米。1743年,宣布了极直径的数值:12707216米。1841年,著名的德国天文学家贝塞耳精心计算了关于地球的一系列数据。他宣布,地球的极直径应该是12712156米。
地球长轴半径6378km左右X2,地球赤道直径是12756KM.

地球简介

地球是距太阳第三颗,也是第五大行星:
轨道半径: 149,600,000 千米
(离太阳1.00 天文单位)
行星直径: 12,756.3 千米
质量: 5.9736e24 千克
地球是唯一一个不是从希腊或罗马神马中得到的名字。Earth一词来自于古英语及日耳曼语。这里当然有许多其他语言的命名。在罗马神话中,地球女神叫Tellus-肥沃的土地(希腊语:Gaia, 亥亚,大地母亲)直到16世纪哥白尼时代人们才明白地球只是一颗行星。
地球,当然不需要飞行器即可被观测,然而我们直到二十世纪才有了整个行星的地图。在空间拍摄的地球照片有很高价值;它们大大帮助了气象预报及暴风雨跟踪预报。而且这些图片都非常漂亮!
地球由于不同的化学成分与地震性质被分为不同的岩层(深度-千米):
0- 40 地壳 2700-2890 D'' layer - D"层
40- 400 Upper mantle - 上地幔 2890-5150 Outer core - 外核
400- 650 Transition region - 过渡区域 5150-6378 Inner core - 内核
650-2700 Lower mantle - 下地幔
地壳的厚度不同,海洋处较薄,大洲下较厚。内核与地壳为实体;外核与地幔层为流体。不同的层由不连续断面分割开,这由地震数据得到;其中最有名的有数地壳与上地幔间的莫霍面-不连续断面了。
地球的大部分质量集中在地幔,剩下的大部分在地核;我们所居住的只是整体的一个小部分(下列数值×10e24千克):
大气 = 0.0000051
海洋 = 0.0014
地壳 = 0.026
地幔 = 4.043
外地核 = 1.835
内地核 = 0.09675
地核可能大多由铁构成(或镍/铁),虽然也有可能是一些较轻的物质。地核中心的温度可能高达7500K,比太阳表面还热;下地幔可能由硅,镁,氧和一些铁,钙,铝构成;上地幔大多由橄榄石,辉石(铁/镁硅酸盐),钙,铝构成。这些都是通过地震技术获得的资料(所谓地震技术是指在地表人工制造一个震源,如炸弹之类的,通过接受地下的回波来确知地下结构的方法);我们只能在岩浆中获得上地幔的采样,对于其它层则无能为力。地壳主要由石英(硅的氧化物)和类长石的其他硅酸盐构成。就整体看,地球的化学元素组成为: 34.6% 铁 29.5% 氧 15.2% 硅 12.7% 镁 2.4% 镍 1.9% 硫 0.05% 钛 地球是太阳系中密度最大的星体。
其他的类地行星可能也有相似的结构与物质组成,当然也有一些区别:月球至少有一个小内核;水星有一个超大内核(相对于它的直径);火星与月球的地幔要厚得多;月球与水星可能没有由不同化学元素构成的地壳;地球可能是唯一一颗有内核与外核的类地行星。值得注意的是,我们的有关行星内部构造的理论只是适用于地球。
不像其他类地行星,地球的地壳由几个实体板块构成,各自在热地幔上漂浮。理论上称它为板块说。它被描绘为具有两个过程:扩大和缩小。扩大发生在两个板块互相远离,下面涌上来的岩浆形成新地壳时。缩小发生在两个板块相互碰撞,其中一个的边缘部份伸入了另一个的下面,在炽热的地幔中受热而被破坏。在板块分界处有许多断层(比如加利福尼亚的San Andreas断层),大洲板块间也有碰撞(如印度洋板块与亚欧板块)。目前有八大板块:
¤北美洲板块 - 北美洲,西北大西洋及格陵兰岛
¤南美洲板块 - 南美洲及西南大西洋
¤南极洲板块 - 南极洲及沿海
¤亚欧板块 - 东北大西洋,欧洲及除印度外的亚洲
¤非洲板块 - 非洲,东南大西洋及西印度洋
¤印度与澳洲板块 - 印度,澳大利亚及大部分印度洋
¤纳斯卡板块 - 东太平洋及毗连南美部分地区
¤太平洋板块 - 大部分太平洋(及加利福尼亚南岸)
还有超过廿个小板块,如阿拉伯,菲律宾板块。地震经常在这些板块交界处发生。
地球的表面十分年轻。在5亿年的短周期中(天文学标准),不断重复着侵蚀与构造的过程,地球的大部分表面被一次又一次地形成和破坏,这样一来,除去了大部分原始的地理痕迹(比如星体撞击产生的火山口)。这样一来,地球上早期历史都被清除了。地球至今已存在了45到46亿年,但已知的最古老的石头只有40亿年,连超过30亿年的石头都屈指可数。最早的生物化石则小于39亿年。没有任何确定的记录表明生命真正开始的时刻。
71%的地球表面为水所覆盖。地球是行星中唯一一颗能在表面存在有液态水(虽然在土卫六的表面存在有液态乙烷与甲烷,木卫二的地下有液态水)。我们知道,液态水是生命存在的重要条件。海洋的热容量也是保持地球气温相对稳定的重要条件。液态水也造成了地表侵蚀及大洲气候的多样化,目前这是在太阳系中独一无二的过程(很早以前,火星上也许也有这种情况)。
地球的大气由77%的氮,21%氧,微量的氩、二氧化碳和水组成。地球初步形成时,大气中可能存在大量的二氧化碳,但是几乎都被组合成了碳酸盐岩石,少部分溶入了海洋或给活着的植物消耗了。现在板块构造与生物活动维持着二氧化碳的循环。大气中稳定存在的少量二氧化碳通过温室效应对维持地表气温有极其深远的重要性。温室效应使平均表面气温提高了35摄氏度(从冻人的-21℃升到了适人的14℃);没有它海洋将会结冰,而生命将不可能存在。
丰富的氧气的存在从化学观点看是很值得注意的。氧气是很活泼的气体,一般环境下易和其他物质快速结合。地球大气中的氧的产生和维持由生物活动完成。没有生命就没有充足的氧气。
地球与月球的交互作用使地球的自转每世纪减缓了2毫秒。当前的调查显示出大约在9亿年前,一年有481天,每天18小时。
地球有一个由内核电流形成的适度的磁场区。由于太阳风的交互作用,地球磁场和地球上层大气引发了极光现象。这些因素的不定周期也引起了磁极在地表处相对地移动;北磁极现正在北加拿大。
地球的卫星
地球只有一个自然卫星--月球。
未知点
-我们有关地球的知识全部是由极不直接的证据逐步导出的。我们如何才能得到更多的信息?
-仅管太阳"常数"的有所增加,地表的平均温度却数十亿年来非常稳定。最好的解释这个的理由是:由大气中二氧化碳的数量改变,控制温室效应来完成。但这到底是怎么完成的?亥亚假设主张是由生物圈的活动维持了它。更多的有关金星与火星的详情可能会提供某些线索。
-在形成像金星一样大气前我们能将多少二氧化碳释放到大气中?

地球简介

地球是距太阳第三颗,也是第五大行星:
轨道半径: 149,600,000 千米
(离太阳1.00 天文单位)
行星直径: 12,756.3 千米
质量: 5.9736e24 千克
地球是唯一一个不是从希腊或罗马神马中得到的名字。Earth一词来自于古英语及日耳曼语。这里当然有许多其他语言的命名。在罗马神话中,地球女神叫Tellus-肥沃的土地(希腊语:Gaia, 亥亚,大地母亲)直到16世纪哥白尼时代人们才明白地球只是一颗行星。
地球,当然不需要飞行器即可被观测,然而我们直到二十世纪才有了整个行星的地图。在空间拍摄的地球照片有很高价值;它们大大帮助了气象预报及暴风雨跟踪预报。而且这些图片都非常漂亮!
地球由于不同的化学成分与地震性质被分为不同的岩层(深度-千米):
0- 40 地壳 2700-2890 D'' layer - D"层
40- 400 Upper mantle - 上地幔 2890-5150 Outer core - 外核
400- 650 Transition region - 过渡区域 5150-6378 Inner core - 内核
650-2700 Lower mantle - 下地幔
地壳的厚度不同,海洋处较薄,大洲下较厚。内核与地壳为实体;外核与地幔层为流体。不同的层由不连续断面分割开,这由地震数据得到;其中最有名的有数地壳与上地幔间的莫霍面-不连续断面了。
地球的大部分质量集中在地幔,剩下的大部分在地核;我们所居住的只是整体的一个小部分(下列数值×10e24千克):
大气 = 0.0000051
海洋 = 0.0014
地壳 = 0.026
地幔 = 4.043
外地核 = 1.835
内地核 = 0.09675

地球是太阳系从内到外的第三颗行星,也是太阳系中直径、质量和密度最大的类地行星。它也经常被称作世界。英语的地球Earth一词来自于古英语及日耳曼语。地球已有44~46亿岁,有一颗天然卫星月球围绕着地球以30天的周期旋转,而地球以近24小时的周期自转并且以一年的周期绕太阳公转。迪士尼有同名纪录片。

关于地球的资料~

地球是围绕太阳运行的行星,地球的公转轨道并非是正圆,而是有着500万公里的起伏变化,日地距离最远时为15210万千米,在天文学上这个时候的地球处于远日点;最近时为 14710万千米,这时地球处于近日点。
地球赤道半径6378.137千米,极半径6356.752千米,平均半径约6371千米,赤道周长大约为40076千米,呈两极稍扁赤道略鼓的不规则的椭圆球体。地球表面积5.1亿平方公里,其中71%为海洋,29%为陆地,在太空上看地球呈蓝色。

扩展资料:
地球的诞生与演化
1、地球形成之初是一个由岩浆组成的炽热的球,后来地表的温度不断下降,固态的地核逐渐形成。密度大的物质向地心移动,密度小的物质浮在地球表面,形成了一个表面主要由岩石组成的地球。
2、太古宙、元古宙时期,地球自向外释放能量,由高温岩浆不断喷发释放的水蒸气,二氧化碳等气体构成了非常稀薄的早期大气层---原始大气。随着原始大气中的水蒸气的不断增多,越来越多的水蒸气凝结成小水滴,再汇聚成雨水落入地表,形成了原始海洋。
3、显生宙时期,其时限由543Ma至今,这一时期生物及其繁盛,地质演化十分迅速,地质作用丰富多彩。
参考资料来源:百度百科-地球

哪些物体是球体
答:5、高尔夫球:球的直径42.67毫米,重46克。高尔夫球从结构上可以分为单层球、双层球、三层球、多壳球;从硬度上可以分为硬度90-105、硬度80-90、硬度70三种。6、网球:网球直径在6.541和6.858公分之间,重量在56.7和...

球的特点是什么呢
答:1、球心和截面圆心的连线垂直于截面。2、球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r²=R²d²。3、球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。4...

球都有什么种类
答:第一种:羽毛球。羽毛球主要靠手和羽毛球的切合来玩的,运动量挺大的,适合在户内或者没风的户外。第二种:乒乓球。乒乓球是中国的国球,讲究的是手与球拍的配合默契和眼睛对球的应变能力。第三种:篮球。打好篮球靠的...

三大球和三小球分别是什么?
答:三大球指的是:足球,篮球和排球。是源于苏联的说法,据传是以运动所用球的大小而划定的说法。其中足球起源于中国,篮球和排球起源于美国。三小球指的是:乒乓球、羽毛球和网球。在电子工业出版社出版图书《体育与健康》当中...

球的表面积公式和体积公式是什么?
答:一个半圆绕直径所在直线旋转一周所成的空间几何体叫做球体,简称球,半圆的半径即是球的半径。球体是有且只有一个连续曲面的立体图形,这个连续曲面叫球面。球体在任意一个平面上的正投影都是等大的圆,且投影圆直径等于球体...

排球,足球,篮球的图片是什么?
答:篮球、足球、排球、皮球的图片分别如下:1、篮球:2、足球:3、排球:4、皮球:

足球介绍
答:10.当一队员踢任意球时,同队队员不得处在他与对方端线之间,并且对方队员不可站在距离他10码之内。11.队员可选择任何方式踢任意球。12.球从两竿之间或从其间上方无限高度穿过,算胜一球。13. 在比赛进行中,可用身体...

生活中的球体物品有哪些?
答:排球(volleyball)是球类运动项目之一,球场长方形,中间隔有高网,比赛双方(每方六人)各占球场的一方,球员用手把球从网上空打来打去。排球运动使用的球,用羊皮或人造革做壳,橡胶做胆,大小和足球相似。参考资料来源:...

棒球是什么样的,与网球的形状有啥不一样
答:1、棒球是圆形软木、橡胶或类似物质作球心,绕以麻线,因此自身的弹性有限。2、网球在从100英寸(254厘米)的高度向混凝土地面作自由落体运动时,反弹的高度应该介于53英寸(134.62厘米)和58英寸(147.32厘米)之间。因此...

有关乒乓球的资料
答:悉尼4枚,雅典3枚……多年来中国乒乓球队一直以“梦之队”的姿态出现在奥运赛场上,乒乓球项目也是中国代表团最为稳固的夺金点之一。更多乒乓球资料可百度百科乒乓球http://baike.baidu.com/view/8182.htm ...