大学数学有哪些课程

作者&投稿:潘骆 (若有异议请与网页底部的电邮联系)
『壹』 大学理科数学有哪些课程

高等数学
线性代数
复变函数
常微分方程
数学物理方法
概率统计

另外,根据专业不同,可能还会有其他科目

『贰』 大学数学包括哪些

“大学里读的数学”统称“大学数学”,教育部教育司属下有“大学数学课程指导委内员会”。下面有很多“分容指导委员会”而“工科数学课程分指导委员会”只是其中的一个。
“工科数学课程分指导委员会”管辖的课程有“高等数学”、“线性代数”、“概率论与数理统计”、“复变函数与积分变换”、“数理方程与特殊函数”、“计算方法”六门。
经管类的少点,并且高等数学(经管类一般称为微积分)
《高等数学》课程的内容为:函数与极限,一元函数微分学,一元函数积分学,空间解析几何,多元函数微分学,多元函数积分学(重积分与曲线、曲面积分),级数(数项级数、幂级数、傅立叶级数),微分方程,场论初步(梯度、散度、旋度)。

『叁』 大学数学专业都有哪些课程要详细

专业基础类课程:
解析几何
数学分析I、II、III
高等代数I、II
常微分方程
抽象代数
概率论基础
复变函数
近世代数

专业核心课程:
实变函数
偏微分方程
概率论
拓扑学
泛函分析
微分几何
数理方程

专业选修课:
离散数学(大二上学期)
数值计算与实验(大二下学期)
分析学(1)
代数学(1)
伽罗瓦理论
复分析
代数数论
动力系统引论
基础数论
偏微分方程(续)
一般拓扑学
理论力学
数学建模
微分拓扑
调和分析
常微分方程几何理论
分析专题选讲
组合数学与图论
范畴论
紧黎曼曲面
黎曼几何初步
偏微近代理论
交换代数
代数拓扑
同调代数
流形与几何
小波与调和分析
李群李代数
分析学Ⅱ
代数学Ⅱ
代数K理论
代数几何
多复变基础
泛函分析(续)

『肆』 大学数学专业基础课程有哪些

专业基础课有来数学分析、高等代自数、解析几何、概率论与数理统计:这三者是老三门,将来如果考研时要用到的;近代数学的新三门是:拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数);另外其他的一些常见的分支包括楼上所说的复变函数、常微分、运筹、最优化,数学模型。

『伍』 数学专业有哪些专业课程

数学专业的专业课程有:

一、数学分析

又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。

数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

二、高等代数

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

三、复变函数论

复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。

复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。

四、抽象代数

抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。

五、近世代数

近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。

法国数学家伽罗瓦在1832年运用「群」的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

~

数学学科有哪些?
答:数学史、数理逻辑与数学基础、数论、代数学、代数几何学、几何学、拓扑学、数学分析、非标准分析、函数论、常微分方程、偏微分方程、动力系统、积分方程、泛函分析、计算数学、概率论;数理统计学、应用统计数学、运筹学、组合数学、模糊数学、量子数学、应用数学(具体应用入有关学科)、数学其他学科。

数学专业课有哪些
答:数学专业课主要包括数学分析、高等代数、解析几何、常微分方程、复变函数、实变函数、抽象代数、近世代数、概率论、数理统计、拓扑学、微分几何、数学史、数学建模、数学实验、离散数学、C语言、数值分析、微分方程数值解、数学物理方程、算法与数据结构等课程。

大学数学课程有哪些
答:大学数学主要课程:数学分析、高等代数、高等数学、解析几何、微分几何、高等几何、常微分方程、偏微分方程、概率论与数理统计、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑学、模糊数学等。其中按专业发展方向可以分成三类:1、数学专业主干课程:初等数论、概率论与数理统计、数学教...

数学专业有哪些课程?
答:数学专业的主要课程包括数学分析、线性代数、解析几何、普通物理、近代物理、微分方程、偏微分方程、数值分析、概率论、最优化、代数学、泛函分析、离散数学、复分析、一般拓扑学、微分几何引论、测度与积分、应用统计学等。 除此之外,数学专业的学生还可以选择一些限制性选修课,如群表示论、微分拓扑、数论...

数学专业有什么课程?
答:大学数学专业可学习的课程分为公共课程和专业课程,具体如下:1、公共课程:大学英语、体育、政治(马克思主义思想概论、毛泽东思想与中国特色社会主义理论、思想道德修养与法律基础、中国近现代史纲要)、数学(高等数学、数学分析、解析几何)、高等代数(线性代数)、概率论与数理统计。2、专业课程:复变函数...

数学专业都有什么课?
答:一、数学与应用数学 1、主干学科:数学。2、主要课程:分析学、代数学、几何学、概率论、物理学、数学模型、数学实验、计算机基础、数值方法、数学史等,以及根据应用方向选择的基本课程。3、主要实践性教学环节:包括计算机实习、生产实习、科研训练或毕业论文等,一般安排10~20周。4、学年:4年。5、...

数学专业的专业课程有什么?
答:数学专业的专业课程有:一、数学分析 又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与复数及其函数的...

数学课程有哪些
答:课程编号 课程名称 学时数 学分数03110015-8 数学分析 348 19授课对象:数学与应用数学专业学生内容提要:本课程是数学专业的一门主要基础课。主要介 绍极限论、一元微积分、无穷级数与多元微积分等方面的系统知识。通过学习使学生正确理解和掌握数学 分析的基本概念和理论,初步掌握数学分析的论证方法,较熟练地进行积分...

数学与应用数学专业有哪些课程?
答:大一学《高等代数》《数学分析》《立体几何 》《大学英语》《计算机》这些是算学分的,其中除了几何,其他的.算学位积分,特重要,下半年有《解析几何》然后就是一些小科。大二也是《数学分析》、《大学英语》、《计算机》、《马克思》《毛泽东》这些算学分,还有《大学物理》、选修课等。大三会学《算法...

数学专业有哪些课程?
答:它主要讲述微分方程的基本理论、解法和应用。这门课程在物理、工程、生物学、经济学等领域中都有广泛的应用。总之,数学专业课程涵盖的内容非常广泛,需要学生具备扎实的数学基础和强大的数学分析能力。同时,数学专业还需要学生掌握一定的计算机应用技能,以便在实际工作中能够灵活运用数学知识。