柳林地区煤层气开发数值模拟研究 柳林地区煤层气排采工艺技术初探

作者&投稿:廉骂 (若有异议请与网页底部的电邮联系)

史进1 吴晓东1 赵军2 孟尚志2 莫日和2

(1.中国石油大学石油工程教育部重点实验室 北京昌平 102249 2.中联煤层气有限责任公司 北京东城 100011)

摘要:国内外对于常规气田开发数值模拟的研究已经比较成熟,但对于煤层气田开发方案具体应该包括哪些方面的因素研究较少。本文主要从多层合采方案设计,合理排采速度的选择,井网设计这几个煤层气与常规气田有显著不同的方面进行阐述,最后以河东煤田柳林示范区为例,利用ECLIPSE软件对其进行开发方案的数值模拟研究,可以为中国煤层气田的开发提供一定的指导意义。

关键词:煤层气 开发方案 多层合采设计 排采速度 井网设计

基金项目: “国家科技重大专项”项目62 鄂尔多斯盆地石炭二叠系煤层气勘探开发示范工程 ( 2008ZX05062 03)

作者简介: 史进,1983 年生,男,汉族,山东淄博人,中国石油大学 ( 北京) 石油天然气工程学院博士生,主要从事煤层气开发方面的研究工作。E mail: shijin886@163. com,电话: 18901289094

Numerial Simulation Research on Coalbed Methane Development in Liulin Area

SHI Jin1,WU Xiaodong1,ZHAO Jun2,MENG Shangzhi2,MO Rihe2

( 1. College of Petroleum Engineering in China University of Petroleum,Beijing 102249,China2. China United Coalbed Methane Co. ,Ltd. ,Beijing 100011,China)

Abstract: The research on the numerial simulation of conventional gas field development is quite mature both in and abroad,but less effort has been put on which aspects should be included when designing coalgas field de- velopment method. This article elaborates the remarkable differences of development strategies between coalbed methane and conventional gas,including multi-layers development design,reasonable dewatering rate chosen and well pattern design. In the last part of the article,Liulin area in Hedong coalfield was taken as an example to de- sign the development strategies by ECLIPSE software. All the aspects metioned above can provide a guidance to the China's CBM development.

Keywords: coalbed methane; development strategies; production from multi-layers; dewatering rate; well pattern design

1 前言

煤层气在美国目前已经占到了9%的天然气产量以及10%的天然气探明储量。煤层气藏与常规的天然气藏不同。一般情况下,煤层是被水饱和的[1],气体以吸附方式存在于煤中,只有通过排水作业将气藏的压力降到临界解吸压力以下时,气体才会解吸出来,这导致了煤层气藏开发方案的设计与常规气藏有很大不同,主要体现在以下几个方面[2]:

(1)多层合采方案的设计。煤层气一般采用合采方式生产,通过地质分析以及产能预测,进行不同多层合采方案的优化设计是很重要的。

(2)合理排采速度的选择。煤层气一般要进行排水采气,才能获得工业气流。排采速度过快会伤害储层,导致煤层气不出气;排采速度过慢又会使投资回收期大大延长,没有经济效益。所以优选合理的排采速度是很必要的,这也是煤层气开发方案设计与常规气藏最大的不同。

(3)井网优化设计。煤层气生产时,多井间形成的干扰可以使该处的压力很快下降,从而最大幅度的降低地层压力,使煤层气更快、更多的解吸出来。如何部署井网才能使井间干扰达到最大化是煤层气井网设计的研究重点。

2 多层合采方案设计

煤层气井的产量一般较低,而且因为井一般较浅,相邻层相隔较近,加上单层开采产量少,利润低,所以煤层气井一般采用多层合采方式生产。煤层气的多层合采方案设计一般从以下几个方面进行考虑[3]:

(1)煤层气的多层合采需要重点考虑不同层间渗透率、厚度、丰度、水文地质特性差异、等温吸附曲线的差异以及压力体系的差异等方面的影响。

(2)多层合采一般以相邻层为主,相邻层间有稳定的隔层,以保证层系间没有窜流的发生,相隔较远的层系合采需要慎重考虑。

(3)多层合采对产能的影响。

(4)合采时压裂以及排采作业的要求。

3 合理排采速度的选择

煤层中气体主要以吸附方式存在于煤层中,要使气体解吸,首先要进行排水作业,使地层压力降到临界解吸压力以下。煤层气的排水作业是贯穿煤层气开发始终的过程,决定了煤层气开发效果最重要的环节,也是煤层气开发有别于其他油气资源开发最独特的环节[4~5]

煤的应力敏感性比较强,排采强度过大,会导致煤层出煤粉,出砂,堵死近井地带渗流通道。因此煤层气在生产初期一般采用定液面降深方式生产,即每天动液面的下降高度保持一致。等到液面降到煤顶板以上,就可以采用定压的方式生产,以延长煤层气的开采年限。

山西宁武盆地一口煤层气井,因为初期排采速度过快,使本来渗透率就很低的煤层发生了压敏效应,使压降漏斗得不到充分的扩展,生产半年就因为产量过低而报废。

合理的液面降深速度值一般利用数值模拟软件进行计算,也有文献利用解析方法也进行了计算[6]

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

式中: 为排采速度,m3/d;pe为储层压力,MPa;pw为井底压力,MPa;V为实测含气量,m3/t;pL为兰氏压力,MPa;VL为兰氏体积,m3/t;K为煤储层渗透率,×10-3μm2;C为综合压缩系数,MPa-1;μ为水粘度,mPa·s;ρ为水的密度,kg/m3

4 井网优化设计

对于常规天然气而言,井间干扰会使常规天然气产量大幅度减少。而煤层气恰恰相反,井间干扰产生的压力叠加可以两井间的压力快速降低(如图1),从而使煤层气更快的解吸出来。因此,煤层气藏一般采用小间距井网的方法来增加井间干扰,从而使两井之间的压力快速降低,使煤层气产气量峰值出现在更早,也更高[7~8]

图1 多井排采时形成的压力降落

煤层气没有稳产时间的概念,煤层气的井网布置主要从采收率和经济效益两个方面指标进行优化设计。基本要求是以最少的井数,达到区块干扰的最大化,从而达到采收率以及效益的最大化。煤层气布井一般考虑以下几个参数:井网密度、井网类型、井距以及布井方位[9]。这其中井距是最重要的参数[10],井距过大,无法形成有效的井间干扰,达不到整体降压的效果,井距过小,成本提高,效益变差。

本文采用各向异性计算法以及数值模拟法综合确定最佳井距,即先根据采收率与井数关系的拐点判断最优井网密度,再根据区块的各向异性程度计算理论最佳井距,再利用数值模拟法以及微地震参数来确定模拟最佳井距以及井网类型,并与计算出的理论最佳井距进行比较。

5 柳林示范区煤层气开发方案设计

5.1 柳林示范区简介

柳林示范区位于山西省西部,河东煤田中部,区块面积194.42km2(图2),煤层气资源开发潜力巨大。该区块构造简单,是一个向西倾斜的单斜构造[11~13]。示范区内煤的镜煤反射率为1.24%~2.79%,属于中级变质程度焦、肥煤。含气量在1.83~23.22m3/t之间,煤层端割理发育,面割理相对不发育,属于典型的节理煤。面割理平均渗透率2.8mD,端割理平均渗透率为1.61mD,面割理与端割理的渗透率比近似为7∶4。该区目的煤层主要是山西组中的3,4,5煤组,一般称上煤组;太原组8,9,10煤组,一般称为下煤组。

图2 柳林区块试验区示意图

5.2 开发方案设计

5.2.1 多层合采方案优化设计

以下时柳林地区山西组的3+4,5号煤层和太原组的8,9+10号煤层的主要储层性质特征以及平均产水量情况。

上煤组和3+4和5号煤储层特征十分相似,地层压力相差不大,而且距离太近,平均距离只有5.5m,同时开采难度不大。两者临界解吸压力,出水量均不大,存在的层间干扰会较小。故一般将上煤组的3+4,5作为同一开发层系进行合采作业。在一些3+4,5号煤相隔很近的地区,可以将3,4,5层作为一层进行压裂作业。

下煤组的8号煤物性较好,但产水量过大,而且解吸压力低,气体需要长期排水才能解吸出来,可以进行一些试采工作,对出水情况有进一步的了解。9+10号煤物性好,水量小,但因为厚度太小,无法形成有效产能,而且含有有毒气体H2S,开采时对安全以及管柱防腐要求都比较高,所以暂时不建议开采。

表1 各煤层的储层性质

上煤组3,4,5号煤和下煤组的8号煤储层性质相差较大,无法简单判断的合采效果的好坏,本文利用ECILIPSE软件计算不同的分采以及合采方式下的产量以及最终采收率,来判断合采效果的优劣。

表2 分采及合采预测分析

×从上表计算的结果可以看出,如果合采3,4,5,8号煤会因为8号煤出水过大,使3,4,5号煤无法正常解吸,从而使累产量以及采收率大幅度降低,所以不建议进行上下煤组的合采作业。推荐的主要开发层系是上煤组的3,4,5号煤。

5.2.2 合理排采速度优化设计

利用ECLIPSE软件可以模拟出在不同的排采速度下进行柳林示范区煤层气多层合采的优化设计。从图3可以看出,以不同速度排采的,累产量和峰值产量都不一样,一般的趋势是随着排采速度的增加,峰值产量和累产量都增加,但是排采速度增加到一定限度时,会出现一个拐点,这是因为煤储层的压敏效应很强,如果排采速度过快,会使储层受到伤害,从而使产量减少。从图中可以看出,柳林示范区以每天6m的速度降液面开发效果比较好。

图3 不同的降液面速度与峰值产量及累产量的关系

5.2.3 井网优化设计

先选定区块中1600m×1600m的区域,进行不同井排距的布井,得出井数与采收率的关系,从图4中可以看出,当井数为35口时,出现拐点,井数再增加,采收率增加的幅度降低。所以该1600m×1600m区域内的最佳布井数为35口,故该区的理论最优井网密度为14口井/km2,单井控制面积为73052m2。根据各向异性1.32∶1的要求可以算出,理论最佳井距为310m×235m。

图4 井数与采收率的关系

再对示范区内200m×200m,300m×200m,300m×250m,400m×300m,400m×400m五种井排距在不同井网类型下的采收率以及井网控制面积的比较。从图5中可以看出,菱形井网的采收率始终好于矩形井网,所以实际布井如果地形条件允许,应该尽量采用菱形井网。综合考虑采收率以及控制面积的因素,得出模拟最佳井距为300m×250m,与前面得到的理论最佳井距基本吻合。

图5 不同井距下与采收率以及井网控制面积的关系

根据图6和图7柳林示范区上下煤组的裂缝监测可以看出,上煤组的最大主应力方向为东西方向,下煤组的最大主应力方向约为北偏东45°,只开采上煤组菱形井网长轴方向为东西方向;如果只开采下煤组,菱形井网长轴方向为北偏东45°;如果上下煤组合采,菱形井网长轴方向为北偏东45°,可以使出水量大的下煤组排采效果更好。

结论

(1)煤层气开发方案的优化设计主要包括以下几个方面的内容:多层合采方案设计、合采排采速度的选择以及井网优化设计。

(2)进行多层合采方案设计时首先考虑各煤层的物性,然后考虑产水量,最后考虑不同层合采对压裂及排采施工的要求。

图6 上煤组裂缝监测

图7 下煤组裂缝监测

(3)根据排采速度与累产量及峰值产量的关系可以得到合理排采速度。

(4)井网优化设计中的最佳井距以及井网类型通过各向异性计算法以及数值模拟法综合确定,布井方位通过微地震测出的裂缝走向确定。

参考文献

[1] 苏付义等 . 1998. 煤层气储层基本特征及储层工程研究内容 . 北京: 地质出版社,84

[2] 王鸣华 . 1997. 气藏工程 [M] . 北京: 石油工业出版社

[3] Jerrald L,Saulsberry A. 1996. Guide To Coalbed Methane Reservoir Engneering [M] GRI

[4] Zhang Xian min,Tong Deng ke. 2009. Numerical Simulation of Gas-Water Leakage Flow in A Two Layered Coalbed System. Journal of Hydrodynamics,Ser. B

[5] Aminian K,Ameri S. 2009. Predicting production performance of CBM reservoirs. Journal of Natural Gas Science and Engineering. ( 1)

[6] 倪小明,王延斌,接铭训 . 2007. 煤层气井排采初期合理排采强度的确定方法 [J] . 西南石油大学学报 . 12,101 ~ 104

张俊虎,刘君 . 2008. 煤层气井网布置优化设计的探讨 [J] . 科学情报开发与经济 . ( 10)

[7] Wu Yu,Liu Jishan. 2010. Development of anisotropic permeability during coalbed methane production. Journal of Natu- ral Gas Science and Engineering

[8] 杨秀春,叶建平 . 2008. 煤层气开发井网部署与优化方法 [J] . 中国煤层气 . 1,13 ~ 18

[9] Impacts of Permeability Anisotropy and Pressure Interference on Coalbed Methane ( CBM) Production. SPE 71069

[10] 要惠芳 . 2007. 山西省柳林县杨家坪煤层气储集层物性及勘探开发潜力 [J] . 石油勘探与开发 . ( 34)

[11] 苏复义,蔡云飞 . 2004. 数值模拟技术在柳林煤层气试验区的应用 [J] . 天然气工业 . ( 5)

[12] 池卫国 . 1998. 柳林煤层气勘探开发试验区水文地质研究 [J] . 煤田地质与勘探,26 ( 3)



柳林地区煤层气开发数值模拟研究~

史进1 吴晓东1 赵军2 孟尚志2 莫日和2
基金项目:“国家科技重大专项”项目62-鄂尔多斯盆地石炭二叠系煤层气勘探开发示范工程(2008ZX05062-03)
作者简介:史进,1983年生,男,汉族,山东淄博人,中国石油大学(北京)石油天然气工程学院博士生,主要从事煤层气开发方面的研究工作。E-mail:shijin886@163.com,电话:18901289094
(1.中国石油大学石油工程教育部重点实验室 北京昌平 1022492.中联煤层气有限责任公司 北京东城 100011)
摘要:国内外对于常规气田开发数值模拟的研究已经比较成熟,但对于煤层气田开发方案具体应该包括哪些方面的因素研究较少。本文主要从多层合采方案设计,合理排采速度的选择,井网设计这几个煤层气与常规气田有显著不同的方面进行阐述,最后以河东煤田柳林示范区为例,利用ECLIPSE软件对其进行开发方案的数值模拟研究,可以为中国煤层气田的开发提供一定的指导意义。
关键词:煤层气 开发方案 多层合采设计 排采速度 井网设计
Numerial Simulation Research on Coalbed Methane Development in Liulin Area
SHI Jin1, WU Xiaodong1, ZHAO Jun2, MENG Shangzhi2, MO Rihe2
(1.College of Petroleum Engineering in China University of Petroleum, Beijing 102249, China 2.China United Coalbed Methane Co., Ltd., Beijing 100011, China)
Abstract: The research on the numerial simulation of conventional gas field development is quite mature both in and abroad, but less effort has been put on which aspects should be included when designing coalgas field de- velopment method.This article elaborates the remarkable differences of development strategies between coalbed methane and conventional gas, including multi-layers development design, reasonable dewatering rate chosen and well pattern design.In the last part of the article, Liulin area in Hedong coalfield was taken as an example to de- sign the development strategies by ECLIPSE software.All the aspects metioned above can provide a guidance to the China's CBM development.
Keywords: coalbed methane; development strategies; production from multi-layers; dewatering rate; well pattern design
1 前言
煤层气在美国目前已经占到了9%的天然气产量以及10%的天然气探明储量。煤层气藏与常规的天然气藏不同。一般情况下,煤层是被水饱和的[1],气体以吸附方式存在于煤中,只有通过排水作业将气藏的压力降到临界解吸压力以下时,气体才会解吸出来,这导致了煤层气藏开发方案的设计与常规气藏有很大不同,主要体现在以下几个方面[2]:
(1)多层合采方案的设计。煤层气一般采用合采方式生产,通过地质分析以及产能预测,进行不同多层合采方案的优化设计是很重要的。
(2)合理排采速度的选择。煤层气一般要进行排水采气,才能获得工业气流。排采速度过快会伤害储层,导致煤层气不出气;排采速度过慢又会使投资回收期大大延长,没有经济效益。所以优选合理的排采速度是很必要的,这也是煤层气开发方案设计与常规气藏最大的不同。
(3)井网优化设计。煤层气生产时,多井间形成的干扰可以使该处的压力很快下降,从而最大幅度的降低地层压力,使煤层气更快、更多的解吸出来。如何部署井网才能使井间干扰达到最大化是煤层气井网设计的研究重点。
2 多层合采方案设计
煤层气井的产量一般较低,而且因为井一般较浅,相邻层相隔较近,加上单层开采产量少,利润低,所以煤层气井一般采用多层合采方式生产。煤层气的多层合采方案设计一般从以下几个方面进行考虑[3]:
(1)煤层气的多层合采需要重点考虑不同层间渗透率、厚度、丰度、水文地质特性差异、等温吸附曲线的差异以及压力体系的差异等方面的影响。
(2)多层合采一般以相邻层为主,相邻层间有稳定的隔层,以保证层系间没有窜流的发生,相隔较远的层系合采需要慎重考虑。
(3)多层合采对产能的影响。
(4)合采时压裂以及排采作业的要求。
3 合理排采速度的选择
煤层中气体主要以吸附方式存在于煤层中,要使气体解吸,首先要进行排水作业,使地层压力降到临界解吸压力以下。煤层气的排水作业是贯穿煤层气开发始终的过程,决定了煤层气开发效果最重要的环节,也是煤层气开发有别于其他油气资源开发最独特的环节[4~5]。
煤的应力敏感性比较强,排采强度过大,会导致煤层出煤粉,出砂,堵死近井地带渗流通道。因此煤层气在生产初期一般采用定液面降深方式生产,即每天动液面的下降高度保持一致。等到液面降到煤顶板以上,就可以采用定压的方式生产,以延长煤层气的开采年限。
山西宁武盆地一口煤层气井,因为初期排采速度过快,使本来渗透率就很低的煤层发生了压敏效应,使压降漏斗得不到充分的扩展,生产半年就因为产量过低而报废。
合理的液面降深速度值一般利用数值模拟软件进行计算,也有文献利用解析方法也进行了计算[6]。

中国煤层气技术进展:2011年煤层气学术研讨会论文集

式中: 为排采速度,m3/d;pe为储层压力,MPa;pw为井底压力,MPa;V实为实测含气量,m3/t;pL为兰氏压力,MPa;VL为兰氏体积,m3/t;K为煤储层渗透率,×10-3μm2;C为综合压缩系数,MPa-1;μ为水粘度,mPa·s;ρ为水的密度,kg/m3。
4 井网优化设计
对于常规天然气而言,井间干扰会使常规天然气产量大幅度减少。而煤层气恰恰相反,井间干扰产生的压力叠加可以两井间的压力快速降低(如图1),从而使煤层气更快的解吸出来。因此,煤层气藏一般采用小间距井网的方法来增加井间干扰,从而使两井之间的压力快速降低,使煤层气产气量峰值出现在更早,也更高[7~8]。

图1 多井排采时形成的压力降落

煤层气没有稳产时间的概念,煤层气的井网布置主要从采收率和经济效益两个方面指标进行优化设计。基本要求是以最少的井数,达到区块干扰的最大化,从而达到采收率以及效益的最大化。煤层气布井一般考虑以下几个参数:井网密度、井网类型、井距以及布井方位[9]。这其中井距是最重要的参数[10],井距过大,无法形成有效的井间干扰,达不到整体降压的效果,井距过小,成本提高,效益变差。
本文采用各向异性计算法以及数值模拟法综合确定最佳井距,即先根据采收率与井数关系的拐点判断最优井网密度,再根据区块的各向异性程度计算理论最佳井距,再利用数值模拟法以及微地震参数来确定模拟最佳井距以及井网类型,并与计算出的理论最佳井距进行比较。
5 柳林示范区煤层气开发方案设计
5.1 柳林示范区简介
柳林示范区位于山西省西部,河东煤田中部,区块面积194.42km2(图2),煤层气资源开发潜力巨大。该区块构造简单,是一个向西倾斜的单斜构造[11~13]。示范区内煤的镜煤反射率为1.24%~2.79%,属于中级变质程度焦、肥煤。含气量在1.83~23.22m3/t之间,煤层端割理发育,面割理相对不发育,属于典型的节理煤。面割理平均渗透率2.8mD,端割理平均渗透率为1.61mD,面割理与端割理的渗透率比近似为7:4。该区目的煤层主要是山西组中的3,4,5煤组,一般称上煤组;太原组8,9,10煤组,一般称为下煤组。
5.2 开发方案设计
5.2.1 多层合采方案优化设计
以下时柳林地区山西组的3+4,5号煤层和太原组的8,9+10号煤层的主要储层性质特征以及平均产水量情况。
上煤组和3+4和5号煤储层特征十分相似,地层压力相差不大,而且距离太近,平均距离只有5.5m,同时开采难度不大。两者临界解吸压力,出水量均不大,存在的层间干扰会较小。故一般将上煤组的3+4,5作为同一开发层系进行合采作业。在一些3+4,5号煤相隔很近的地区,可以将3,4,5层作为一层进行压裂作业。
下煤组的8号煤物性较好,但产水量过大,而且解吸压力低,气体需要长期排水才能解吸出来,可以进行一些试采工作,对出水情况有进一步的了解。9+10号煤物性好,水量小,但因为厚度太小,无法形成有效产能,而且含有有毒气体H2S,开采时对安全以及管柱防腐要求都比较高,所以暂时不建议开采。

图2 柳林区块试验区示意图

表1 各煤层的储层性质


上煤组3,4,5号煤和下煤组的8号煤储层性质相差较大,无法简单判断的合采效果的好坏,本文利用ECILIPSE软件计算不同的分采以及合采方式下的产量以及最终采收率,来判断合采效果的优劣。
表2 分采及合采预测分析


×从上表计算的结果可以看出,如果合采3,4,5,8号煤会因为8号煤出水过大,使3,4,5号煤无法正常解吸,从而使累产量以及采收率大幅度降低,所以不建议进行上下煤组的合采作业。推荐的主要开发层系是上煤组的3,4,5号煤。
5.2.2 合理排采速度优化设计
利用ECLIPSE软件可以模拟出在不同的排采速度下进行柳林示范区煤层气多层合采的优化设计。从图3可以看出,以不同速度排采的,累产量和峰值产量都不一样,一般的趋势是随着排采速度的增加,峰值产量和累产量都增加,但是排采速度增加到一定限度时,会出现一个拐点,这是因为煤储层的压敏效应很强,如果排采速度过快,会使储层受到伤害,从而使产量减少。从图中可以看出,柳林示范区以每天6m的速度降液面开发效果比较好。

图3 不同的降液面速度与峰值产量及累产量的关系

5.2.3 井网优化设计
先选定区块中1600m×1600m的区域,进行不同井排距的布井,得出井数与采收率的关系,从图4中可以看出,当井数为35口时,出现拐点,井数再增加,采收率增加的幅度降低。所以该1600m×1600m区域内的最佳布井数为35口,故该区的理论最优井网密度为14口井/km2,单井控制面积为73052m2。根据各向异性1.32:1的要求可以算出,理论最佳井距为310m×235m。

图4 井数与采收率的关系

再对示范区内200m×200m,300m×200m,300m×250m,400m×300m,400m×400m五种井排距在不同井网类型下的采收率以及井网控制面积的比较。从图5中可以看出,菱形井网的采收率始终好于矩形井网,所以实际布井如果地形条件允许,应该尽量采用菱形井网。综合考虑采收率以及控制面积的因素,得出模拟最佳井距为300m×250m,与前面得到的理论最佳井距基本吻合。

图5 不同井距下与采收率以及井网控制面积的关系

根据图6和图7柳林示范区上下煤组的裂缝监测可以看出,上煤组的最大主应力方向为东西方向,下煤组的最大主应力方向约为北偏东45°,只开采上煤组菱形井网长轴方向为东西方向;如果只开采下煤组,菱形井网长轴方向为北偏东45°;如果上下煤组合采,菱形井网长轴方向为北偏东45°,可以使出水量大的下煤组排采效果更好。
结论
(1)煤层气开发方案的优化设计主要包括以下几个方面的内容:多层合采方案设计、合采排采速度的选择以及井网优化设计。
(2)进行多层合采方案设计时首先考虑各煤层的物性,然后考虑产水量,最后考虑不同层合采对压裂及排采施工的要求。
(3)根据排采速度与累产量及峰值产量的关系可以得到合理排采速度。
(4)井网优化设计中的最佳井距以及井网类型通过各向异性计算法以及数值模拟法综合确定,布井方位通过微地震测出的裂缝走向确定。

图6 上煤组裂缝监测


图7 下煤组裂缝监测

参考文献
[1] 苏付义等.1998.煤层气储层基本特征及储层工程研究内容.北京: 地质出版社, 84
[2] 王鸣华.1997.气藏工程 [M] .北京: 石油工业出版社
[3] Jerrald L, Saulsberry A.1996.Guide To Coalbed Methane Reservoir Engneering [M] GRI
[4] Zhang Xian min, Tong Deng ke.2009.Numerical Simulation of Gas-Water Leakage Flow in A Two Layered Coalbed System.Journal of Hydrodynamics, Ser.B
[5] Aminian K, Ameri S.2009.Predicting production performance of CBM reservoirs.Journal of Natural Gas Science and Engineering. (1)
[6] 倪小明, 王延斌,接铭训.2007.煤层气井排采初期合理排采强度的确定方法 [J] .西南石油大学学报.12,101 ~104
张俊虎, 刘君.2008.煤层气井网布置优化设计的探讨 [J] .科学情报开发与经济. (10)
[7] Wu Yu,Yu Jishan.2010.Development of anisotropic permeability during coalbed methane production.Journal of Natu- ral Gas Science and Engineering
[8] 杨秀春, 叶建平.2008.煤层气开发井网部署与优化方法 [J] . 中国煤层气.1, 13~18
[9] Impacts of Permeability Anisotropy and Pressure Interference on Coalbed Methane (CBM) Production.SPE71069
[10] 要惠芳.2007. 山西省柳林县杨家坪煤层气储集层物性及勘探开发潜力 [J] .石油勘探与开发. (34)
[11] 苏复义,蔡云飞.2004.数值模拟技术在柳林煤层气试验区的应用 [J] .天然气工业. (5)
[12] 池卫国.1998.柳林煤层气勘探开发试验区水文地质研究 [J] .煤田地质与勘探, 26 (3)

莫日和 郭本广 孟尚志 张文忠
( 中联煤层气有限责任公司,北京 100011)
摘 要: 本文从柳林地区地质及储层特征等技术层面上进行分析,采用数值模拟的方法,根据柳林地区不同地点不同的地质特性,设计了对应的排采设备及排采方案,尝试并使用了电潜泵、螺杆泵,游梁泵三种不同类型的泵,首次在该区试验采用丛式井组的煤层气生产方式,使该区的煤层气生产取得了历史上的突破,水平井产量超过了 15000 m3/ d,直井最高产气量达到 1800 m3/ d,应用情况表明,该排采工艺技术能较好地满足柳林地区煤层气井排采的需要,为该区大规模开采煤层气积累了宝贵经验。
关键词: 柳林地区 排采技术 排采效果 应用
作者简介: 莫日和,1969 年生,男,汉族,广东高州人,硕士,高级工程师,中联煤层气有限责任公司,油气井专业,从事钻探、排采工程技术及管理工作,北京安外大街甲 88 号, ( 010) 64299374,13041082135,morh998@ 163. com
Brief Discussion About the CBM Well Dewatering Technology in Liulin area
MO Rihe GUO Benguang MENG Shangzhi ZHANG Wenzhong
( China United Coalbed Methane Corporation,Ltd. ,Beijing 100011,China)
Abstract: This paper analyzed the geology and reservoir characteristics of the LiuLin Areas with the numeri- cal simulation method,according to the different geological characteristics in different locations of the LiuLin dis- trict,corresponding dewatering equipment,scheme and three different type of pumps was designed,including ESP,PCP and beam-pumping unit. As the first experimental test,the use of cluster coalbed methane production wells made a great breakthrough in the production history of the area. The production of the horizontal well exceed 15000 m3/ d,and the highest production of a vertical Well reached 1800 m3/ d. The application showed that the dewatering technology meet the dewatering needs of coalbed methane in the LiuLin area,and also accumulated the experience for the large-scale production of coalbed methane in the future.
Keywords: Liulin area; dewatering technology; Dewatering results,application
1 前言
我国的煤层多属于低孔、低渗、低压,如何确定合理的工作制度以保证煤层气产出量的最大化就显得很重要了。排采的好坏往往决定着煤层气产量的大小,是保障煤层气井连续稳定经济排采的重要因素。煤层的渗透率比普通油气藏要低很多,如果排采制度选择不当,很容易给煤层造成伤害,使压裂裂缝闭合,严重时还会导致气井不出气。
鄂尔多斯盆地东缘柳林示范区煤层气资源蕴含量大,煤层物性较好,针对其开展排采制度及设备的研究,形成一整套的烟煤储层排采制度与设备选型规范,是保障煤层气井连续稳定经济排采的前提,对整个柳林示范区形成商业化开采规模很有意义,同时针对该区块的研究对于中国中阶煤煤层气的开发也有很重要的意义。
2 煤层气排采机理
煤层气又称煤层甲烷,煤炭工业称之为煤层瓦斯,是在成煤过程中形成并赋存于煤层中的一种非常规天然气。这种天然气大部分(70%~90%)赋存在煤岩孔隙内表面上,少量呈游离状态存在于煤的割理和其他孔隙、裂隙中,对煤层气进行开采可以为工业和民用提供重要能源;同时也可以减少煤矿开采时的瓦斯爆炸事故[1~4]。煤层中天然裂隙或割理通常被水饱和,煤层气吸附在煤上。要采出煤层气,首先要让它从煤中解吸出来。只有排出足够的水,煤层压力降至煤的解吸压力后,煤层气的解吸才能开始。所以与天然气生产不同,煤层气在开始产气之前先要排出煤层中大量的水[5]。
3 地质概述
3.1 含煤地层与煤层
本区块内发育煤层14层,其中山西组5层,自上而下编号为1,2,3,4(3+4),5号煤层;太原组9层,自上而下编号为6上,6,7,7下,8+9,9下,10,10下,11号。其中山西组的2,3,4(3+4),5号煤层,太原组的8+9,10号煤为主力煤层,(3+4)号煤层厚度0.04~6.05m,平均为2.81m。全区发育。煤层结构简单,局部含1~3层炭质泥岩或泥岩夹矸,夹矸单层厚度为0.05~0.50m。5号煤煤层层位较稳定,煤厚0~5.04m,平均厚为2.70m。8+9号煤煤层厚度为0.79~10.30m,平均厚度为5.11m,全区稳定。
3.2 煤层吸附特征
该区块内煤层变质程度较高,吸附能力较强。据区块内煤层气井山西组3+4号煤层的朗格缪尔体积为18.34~22.45m3/t,平均20.70m3/t,朗格缪尔压力为1.49~3.52MPa,平均2.27MPa;5号煤层的朗格缪尔体积为13.14~23.21m3/t,平均19.65m3/t,朗格缪尔压力为1.73~2.64MPa,平均2.36MPa;8+9(8+9+10)号煤层的朗格缪尔体积为16.10~25.54m3/t,平均22.48m3/t,朗格缪尔压力为1.27~3.18MPa,平均1.96MPa。平均朗格缪尔体积20.94m3/t,朗格缪尔压力2.2MPa。
3.3 含气饱和度
柳林示范点内煤的兰氏体积(最大吸附量)为18.34~24.43m3/t,平均为21.38m3/t。测试结果表明,煤储层的吸附能力是比较强的。煤层含气饱和度一般为60.22%~75.10%,平均为66.73%。柳林示范点的煤储层大部分处于欠饱和状态。
3.4 渗透率
山西组4(3+4)号煤层的渗透率在0.011~2.80mD之间,5号煤层的渗透率在0.06~2.26mD之间;太原组8+9+10号煤层的渗透率在0.005~24.80mD之间。平均渗透率为3.93mD。可见该区块煤层的渗透率相对较高,且变化范围较大,随煤变质程度及埋深的变化相关系不明显,各向异性及非均质性显著。
3.5 储层压力
该区块4(3+4)号煤层的储层压力为2.58~8.33MPa,平均为5.79MPa,压力梯度为0.46~1.12MPa/100m,平均为0.84MPa/100m;5号煤层的储层压力为2.92~8.41MPa,平均为6.01MPa,压力梯度为0.60~1.11MPa/100m,平均为0.83MPa/100m;8+9(8+9+10)号煤层的储层压力为3.31~7.46MPa,平均为6.47MPa,压力梯度为0.53~1.174MPa/100m,平均为0.85MPa/100m。可见该区块内储层压力较大,压力梯度一般小于静水压力梯度(0.98MPa/100m),为低压异常状态。
3.6 区域水文地质条件
区域主要含水层有奥陶系及石炭系灰岩岩溶、裂缝含水层;二叠、三叠系砂岩裂缝含水层;第三、第四系砂砾石(岩)孔隙含水层。
奥陶系中下统的石灰岩、泥灰岩、白云岩厚度为400~600m。主要出露于煤田外围。奥陶系为浅海相沉积层,其中以上马家沟组岩溶发育程度最高,富水性最强,峰峰组次之,下马家沟组较弱。下统冶里组、亮甲山组一般岩溶裂隙不发育,富水性弱,但局部破碎带岩溶发育,富水性强。本层含丰富岩溶水,是区域性主要含水层。水型主要有NaH-CO3和NaCl型。该含水层上覆有较发育的泥页岩、铝土岩隔水层,离煤层距离较大,因此对煤层的影响较小。
石炭系上统太原组灰岩岩溶、裂隙含水层由5层灰岩组成,总厚度约20m左右,出露范围小,岩溶、裂隙一般不太发育,岩溶以溶隙、小溶孔为主,且多被方解石充填,富水性较弱;区块东缘浅埋区一带,岩溶发育,呈蜂窝状,连通性好,接受补给容易,富水性较强。由于岩溶裂隙发育的不均一性,富水性在不同地点差别较大。水位标高在789.31~814.74m之间,水型多为NaHCO3和NaCl型,矿化度为1190~3210mg/L。
3.7 煤层含水性
柳林试验区煤层水来源受区域水文地质条件制约,主要有地表水和含水层水,断层水不发育。地表水源主要是三川河流水,在试验区东部上游区域,河水向煤系注入或渗透,对煤层水起到一定补给作用。区域含水层是试验区煤层水的主要来源,它的强弱决定了煤层水的大小。柳林地区生产井产水量变化很大,北部区块产水量很大,而南部区块产水量很小,大体上是北高南低,东高西低,与构造走向基本一致。南部地区煤层顶、底板皆为泥质岩,供水性差,渗透到煤层中的水极少。
4 排采设备选型
根据柳林地区煤层气特点,排采方式优选思路主要考虑以下三点:一是尽可能降低井底流压以便充分降低储层压力;二是考虑泵受气体影响等因素;三是确定煤层的供液能力。
设备选用的方法是在生产工作制度中,选择多种排采方式。例如:区块南部低产水量或后期产水量较小的煤层气井,选用工作制度便于调整、液面比较好控制的变速调控抽油机、数控抽油机等[6]。而在北部区域,煤层气井产水量大供液能力强(通常日产水量大于100m3),前期考虑以排水为主,选择大泵来加强排水降压,通常采用螺杆泵、大直径游梁泵及电潜泵。
4.1 游梁泵
游梁泵(抽油机)生产较稳定,检泵周期长,技术、管理都比较成熟。但排量不能过高,且需考虑气体的影响因素。柳林南部杨家峪地区储层供水不足,产水量少,适合采用的就是游梁泵排采工艺,连续生产6个多月,目前泵况仍然良好。在国内众多煤层气勘探开发作业中,常用的排采作业方式是游梁泵排水采气工艺,应用效果非常好。在该区南部采用5型抽油机,能充分满足生产需要。
4.2 螺杆泵
螺杆泵主要由地面驱动装置和井下泵所组成。螺杆泵的优点是气体、煤粉、压裂砂对螺杆泵的影响相对较小,和游梁泵比较,螺杆泵成本低、安装简单、占地面积小,螺杆泵在生产时一般将吸入口下到煤层以下,这样可以使油管中尽量只产水少产气。它的缺点是投产初期,如地层煤粉过多会使螺杆泵卡死而造成抽油杆拧断,而且当扭矩较大时容易发生井下事故,检泵周期一般比较短。日产水量60m3/d以下,使用GLB60023型即可,如果日产水量接近150m3/d,用GLB90018型泵效果较好,如果超过150m3/d,就应该选用GLB90023的泵。
柳林北部地区产水量一般在50~200m3/d,因此在北部普遍采用螺杆泵,使用证明螺杆泵很好地完成排水采气任务。
4.3 电潜泵
当产量超过200m3/d可以考虑使用电潜泵,选择型号是具体看排量以及下泵深度,另外在大斜度的定向井中使用电潜泵可有效防止油管、油杆偏磨引起的油管事故。目前用到的电潜泵有QYB98200/700,GQYB1M01220/700,QYB98300/700N8三种。在北部区域,个别直井及水平井产水量较大,我们选用了电潜泵,在水平井中使用排液量达300m3/d,较好地完成了排水降压的需要。
5井下管柱及工具选择[7~8]
(1)油管、油杆的选择,要满足载荷的需要,在北部产水量大的井中适用89mm的油管、22mm或25mm的油杆(图1),在南部则适用73mm的油管和22mm抽油杆(图2)。
(2)泵径的选择:要尽量满足排液时最大产液量的要求且泵径还不能选择过大,因为泵径越大则悬点载荷越大,对抽油杆及整个排采系统要求更高。柳林南部一般选用38mm管式组合泵,冲程选用2.1m,冲次1~1.5次/min,可以满足该区排量小于10m3/d施工的要求。
6排采制度的选择[9]
合理的排采速度是煤层气高产的保障。如果排采速率过大,液面下降速度过快会使有潜力的煤层气井排采半径缩短、发生速敏效应、支撑剂颗粒镶嵌煤层、裂缝闭合现象来临较快、渗透率迅速降低,进而造成单井产气量低。如果排采速度过小,经济上又不能达到要求。我们借助ECLIPSE建立的模型,充分考虑压敏效应、速敏效应的影响。

图1 螺杆泵井下管柱结构


图2 游梁泵井下管柱结构

通过模拟结果可知,随着降液速度的增加,峰值产量以及累计产量逐渐增加,最后趋于平缓。推荐3,4,5层采用每天降液面6m的速度,计算出来的结果符合杨家峪地区实际降液5~10m的情况。
7 煤层气排采工艺技术的应用
7.1 防气措施
将泵放置到煤层以下。排水泵以下安装沉降式气锚或者螺旋式气锚。
7.2 防煤粉措施
泵以下安装绕丝筛管、沉砂管、“小泵慢抽”、“间歇式排采”时使用防砂卡泵(实心柱塞泵)。
7.3 排采方案
满足生产井排采技术要求,随井的动态变化作相应调整,初期采用定压排采,生产中定产排采。
(1)将泵、计量流程调试至正常工作状态,排采尽量保持连续性。
(2)确定解吸压力,根据解吸压力将排液分为三个阶段:
初期排液阶段:开始排采,当液面降至解吸压力点以上200m左右时,主要是排水降液,降液速度可控制在不大于15米/天,此阶段大约需要1~2个月。
稳定排液阶段:解吸压力点以上200m至煤层以上100m,此阶段可进一步降低排液速度,控制在每天5~10m,此阶段大约需要2个月。
稳定生产阶段:煤层以上100m至煤层,此为稳定生产阶段,保证抽油机等设备平稳运行,液面稳定,以保障平稳连续产气。

图3 丛式井组井眼轨迹

7.4 丛式井组试验
丛式井是在同一井场,钻探多个井眼的油气开发技术,其优点是节约用地、节约钻前工程投资,便于生产管理。针对柳林煤层气气探区地面多为高山林地及良田熟土的特点,在反复论证、试点、总结和不断完善基础上,大力应用大斜度井、水平井等井筒技术,试验推广应用丛式井组。应用丛式井的井组同场部署5口井(图3),每个井组修建一套废水池和清污分流系统,有效保护了耕地面积,有力推动公司向集约型、清洁型、节约型发展,全面提高投资综合效益。
丛式井组的排采设备选用基本与普通直井相同,在井斜不大,产水量较低的情况下,选用游梁泵,如果井斜大于40°,就考虑选用电潜泵。在我们的井组中,4口井选用游梁泵,1口选有电潜泵。试验表明,选用的排采设备很好地完成了经久耐用和排水降压的目的。
7.5 应用效果
形成了一套适合烟煤的直井、水平井排采制度和工艺技术,排采效果好。在该区首次实现了水平井单井产量突破15000m3/d(图4),直井单井产1000m3/d以上,最高达1800m3/d(图5)。

图4 水平井排采曲线

8 结论
(1)针对煤层气排采生产需要,展开了煤层气排采工艺技术的攻关、配套及初步尝试。形成了一套适合柳林地区不同地区、不同产层的排采设备及配套工艺技术。

图5 直井排采曲线


图6 丛式煤层气生产井组

(2)根据煤层气井排采的特点,通过对柳林煤层气井的井下管柱及地面流程设计,引入无级数控抽油机、永久监测压力,较好地完成了排采的施工及资料录取的要求,为该区的大规模开发奠定了基础。
(3)尝试了适合该区丛式井组(图6)的排采设备及工艺,为该区大规模应用丛式井组进行开发创造了条件,丛式井组占地少、易于管理、在地形复杂的柳林地区将会显著提高煤层气开发的整体效益。
参考文献
康永尚等.2008.我国煤层气井排采工作制度探讨,天然气地球科学
钱凯,赵庆波,汪泽成.1999.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,50~61
任源峰等.2006.煤层气井电泵排采工艺技术的研究及应用[J].中国煤层气,3
王红岩,刘洪林,赵庆波等.2005.煤层气富集成藏规律[M].北京:石油工业出版社,44~67
吴佩芳.2000.煤层气开发的理论与实践[M].北京:地质工业出版社,65
许卫,崔庆田,颜明友,李庆章.2001.煤层甲烷气勘探开发工艺技术进展[M].北京:石油工业出版社,150~167
姚艳芳.2001.煤层气井排采试气技术[J].油气井测试,10(4):77~79
赵庆波.1999.煤层气地质与勘探技术[M].北京:石油工业出版社,2~158
Palmer I D,Metcalfe R S,Yee et al.1996.煤层甲烷储层评价及生产技术[M].秦勇,曾勇泽.徐州:中国矿业大学出版社,4~68

(二)煤层气勘探、开发的步骤与资源量、储量
答:图31-2 煤层气地质评价研究内容框图 开发评价阶段是在前期选定的有利区块基础上进行的。应当指出,勘探阶段选定的区块并不一定是含煤盆地煤层气藏最有利的部位。盆地是一个含气系统或是具多个含气系统,选区是气藏的高产区带还是低产区带,要通过深入的勘探才能逐步摸清。开发评价阶段应在优选区块内合理的部署试验井...

煤层气参数井的生产实验研究
答:摘要:本文从地质及储层特征等技术层面上探讨了淮北煤田芦岭矿区煤层气井的生产条件,这些生产试验井的钻探目的是(1)评估煤层气的生产特性,(2)确定储层的排采条件,(3)评价并改进完井技术,进而(4)全面评估煤层气生产所面临的问题。勘探结果显示该井区煤层发育稳定、内生裂隙发育、煤层气含气量中等-偏高,含气饱和度...

煤层气资源量的计算方法
答:计算煤层气资源量的方法较多,有“含气量法”(又称“容积法”)、“压降曲线法”、“产量递减法”、“类比法”、“物质平衡法”、“气藏数值模拟法”等。由于煤层气藏是一种裂隙—孔隙型双重孔隙介质、气液两相的储集类型,气井的动态与常规天然气不同,所以只有采用容积和气藏数值模拟法比较适应...

国外煤层气开发现状
答:20世纪70年代,美国通过地面钻孔的方式,第一次将煤层气作为资源开采(Daniel et al.,2012)。20世纪80年代开始进行系统的煤层气地质基础研究,形成了“煤储层双孔隙几何模型”、“中阶煤选区评价理论”和“煤储层数值模拟技术”等为核心的煤层气勘探开发理论体系,并在此基础理论支撑下,形成了“地面钻井-...

煤层气选区评价参数标准和方法体系
答:通过统计中国主要煤层气目标区煤层厚度与煤层含气量及单井日产量之间的关系可以得出,中高煤阶煤层单层厚度应大于1.5m,大于5m最有利,低煤阶煤层厚度应大于5m,煤层气开发具有较好效果,大于10m最有利(图4-6、图4-7)。 图4-6 中国中高煤阶煤层厚度与煤层含气量及单井日产气量之间的关系图 图4-7 中国低煤阶...

晋城无烟煤CO2&N2-ECBM数值模拟研究
答:摘要:基于晋城无烟煤储层地质条件下的储层和煤岩参数,结合晋城无烟煤煤层气藏直井生产必须压裂增产的实际,以200m为产注井距,使用澳大利亚联邦科工组织的煤层气储层数值模拟软件(SIMED Win)模拟了不同气体组分条件下(CO2:N2=90:10,75:25,50:50)的煤层气增产和二氧化碳埋存过程。研究结果表明,采用CO2和N2混合...

六盘水煤田控气地质因素及煤层气资源评价研究
答:本文以六盘水部分地区主要含气煤层为例,在分析断层、褶皱、顶板岩性、埋深对该区煤层含气量的影响的基础上,采用国土资源部2006年组织的“全国新一轮煤层气资源评价”项目的标准来评价煤层气资源类别,为研究区煤层气勘探开发提供了依据。 1 研究区控气地质因素分析[2] 1.1 断层、褶皱对煤层气赋存的影响 1.1.1 ...

煤层气概述总结
答:为适应中国煤层气勘探开发的需要,中国煤田地质总局于1995年立项进行《全国煤层气资源评价》研究。该项目利用中国40多年积累的煤田地质勘探资料、煤田地质科研和近几年煤层气勘探成果,在中国煤层气区划、煤层气资源、煤层含气性、煤储层特征、控气地质因素、有利区带优选等方面,进行了深入的评价和研究。 一、中国煤层...

中国煤层气勘探开发现状与发展前景
答:一是根据资源分布研究与调整对策;二是国家政策落实和企业间的相互合作须进一步加强;三是在提高单井 产量...建成了高水平的煤层气实验室,测试样品涵盖全国绝大多数煤层气勘探开发区,工作量占全国 80%,技术水平居...为此,通 过精细地质研究,以提高单井产量为目标,对不同井距产气效果数值模拟并进行先导试验,探索了高...

煤层气选区评价原则与程序
答:主要对五大聚煤区按盆地进行煤层气资源评价,分析不同盆地的煤层气勘探开发前景,并确定勘探方向和有利选区。 (二)选区评价 本阶段以煤层气地质理论为基础,充分利用以往勘探资料,运用地质分析的方法,在选区评价原则的指导下,完成煤层气地质研究的任务,整体评价有利区带的煤层气勘探开发潜力,对勘探前景进行评估。其主要...