土的基本工程性质土的工程分类及对土方施工的影响 土的基本工程性质、土的工程分类及其对土方施工的影响?

作者&投稿:栾珊 (若有异议请与网页底部的电邮联系)

一、工程用土分类


(一)工程用土分类


1.依据《土的工程分类标准》GB/T 50145,工程用土指工程勘察、建筑物地基、堤坝填料和地基处理等涉及的土类,有机土指土料中大部分成分为有机物质的土。


(二)按照土的坚实系数分类


1.一类土,松软土:

砂、略有粘性的砂土、腐植土及疏松的种植土、泥炭;

2.二类土,普通土:

潮湿的黏土和黄土、软的盐土和碱土、含有碎石卵石及建筑材料碎宵的堆积土和种植土;

3.三类土,坚土:

中等密实的粘性土或黄土、含有碎石卵石即建筑材料碎宵的潮湿粘性土或黄土;

4.四类土,砂砾坚土:

坚硬密实粘性土或黄土、硬化的重盐土、含有碎石卵石或体积在10%-30%重量在2.5公斤以下石块的中等密实的粘性土或黄土。

5.五类土,软土:

一般指外观以灰色为主,天然孔隙比大于或等于1.0,且天然含水量大于液限的细粒土。包括淤泥、淤泥质土(淤泥质粘性土粉土)、泥炭、泥炭质土等。


以上五类土的详细介绍在这里因为用手机码字内容太多就不多解释了。


二、土的工程性质包括:


1.土的强度性质


2.土体应力应变


三、不良土质的危害


1.土体中各点的力学性质会因其物理状态的不均匀而不同,以此土体的剪切破坏可能是局部的,也可能是整体破坏。


2.需要解决的主要问题是提高地基承载力、土坡稳定性等。

拓展资料:

土的工程性质是在设计和建造各种工程建筑物时所必须掌握的天然土体或填筑土料的工程特性。

不同类别的工程,对土的物理和力学性质的研究重点和深度都各自不同。对沉降限制严格的建筑物,需要详细掌握土和土层的压缩固结特性;天然斜坡或人工边坡工程,需要有可靠的土抗剪强度指标;土作为填筑材料时,其粒径级配和压密击实性质是主要参数。

土的形成年代和成因对土的工程性质有很大影响,不同成因类型的土,其力学性质会有很大差别(见土和土体)。各种特殊土(黄土、软土、膨胀土、多年冻土、盐渍土和红粘土等)又各有其独特的工程性质。

除土的粒径级配外,土中各个组成部分(固相、液相、气相)之间的比例,将影响到土的物理性质,如单位体积重,含水量,孔隙比,饱和度和孔隙度等。

粘性土中含水量的变化,还能使土的状态发生改变,阿太堡最早提出将土的状态分为坚硬、可塑和流动三种,并提出了测定区分三种状态的界限含水量的方法。从流动转到可塑状态的界限含水量称液性界限;从可塑转到坚硬状态时的界限含水量称塑性界限。

两者之间的差值称土的塑性指数,它反映了土的可塑状态的范围。土的界限含水量和土中粘粒含量、粘土矿物的种类有密切关系。为反映天然粘性土的状态,常用液性指数,它等于天然含水量和塑性界限的差值(-)与其塑性指数的比值。≤0时,土处于坚硬状态;>1时,为流动状态,0≤≤1时,为可塑状态。

砂土的密实状态是决定砂土力学性质的重要因素之一,用相对密度表示:=(-)/(-)。为天然状态时孔隙比,为砂土最松状态时的孔隙比,则为最密状态时的孔隙比。≈1时,最密实;≈0时,最松散。

土的压缩和固结性质 土在荷载作用下其体积将发生压缩,测定土的压缩特性可分析工程建筑物的地基沉降和土体变形。饱和粘土的压缩时间决定于土中孔隙水排出的快慢。逐渐完成土压缩的过程,即土中孔隙水受压而排出土体之外,同时导致孔隙压力消失的过程称土的固结或渗压。K.泰尔扎吉最早提出计算土固结过程的一维固结理论,并指出某些粘土中超静孔隙水压力完全消失后,土还可能继续压缩,称次固结。

产生次固结的原因一般认为是土的结构变形。反映土固结快慢的指标是固结系数,土层的水平向固结系数和垂直向的不一定相同。土的压缩量还和它的应力历史有关。土层在其堆积历史上曾受过的最大有效固结压力称先期固结压力。它与现今作用的有效覆盖压力相同时,土层为正常固结土;若先期固结压力大于现今的覆盖压力,则为超固结土;反之则为欠固结土。对于超固结土,外加荷载小于其先期固结压力时,土层的压缩很微小,外加荷载一旦超过先期固结压力,土的变形将显著增大。

土的强度性质 通常指土体抵抗剪切破坏的能力,它是土基承载力、土压和边坡稳定计算中的重要指标之一。它和土的类型、密度、含水量和受力条件等因素有关。饱和或干砂或砂砾的强度表现为颗粒接触面上的摩阻力,它与作用在接触面的上法向有效应力 σ和砂的内摩擦角有关,即=σtg。纯粘性土的不排水抗剪强度仅表现为内聚力,而与法向应力无关,即=。

一般土则既有内聚力又有摩阻力,即=+σtg。式中的和不是常量而是变量,不仅决定于土的基本状态,还和外加荷载速率、外加荷载条件、应力路线等有关。饱和土中的孔隙为水充满,受外加荷载作用时,控制土体强度的不是其所受的总应力σ,而是有效应力σ′(即总应力与孔隙压力μ之差):σ′=σ-μ。因而强度试验的条件不同,所得的强度指标亦异。

试验时,不允许土样排水所得到的是土的总强度指标;如允许完全排水则得到的是土的有效强度指标。理论上用有效应力和有效强度指标进行工程计算较为合适,但正确判别实际工程土体中的孔隙水压水较困难,因而目前生产上仍多用总强度原理和总强度指标。土体的强度还因其沉积条件的影响而存在各向异性。

土的流变性质 土工建筑物的变形和稳定是时间的函数。有些人工边坡在建成后数年甚至数十年才发生坍滑,挡土墙后的土压力也会随时间而增大等,都与土的流变性质有关。

土的流变特性主要表现为:

①常荷载下变形随时间而逐渐增长的蠕变特性;

②应变一定时,应力随时间而逐渐减小的应力松弛现象;

③强度随时间而逐渐降低的现象,即长期强度问题。三者是互相联系的。

作用在土体上的荷载超过某一限值时,土体的变形速率将从等速转变至加速而导致蠕变破坏,作用应力愈大,变形速率愈大,达到破坏的时间愈短。通过试验可确定变形速率与达到破坏的时间的经验关系,并用以预估滑坡的破坏时间。产生蠕变破坏的限界荷载小于常规试验时土的破坏强度。

从长期稳定性要求,采用的土体强度应小于室内试验值。土体强度随时间而降低的原因,当然不只限于蠕变的影响。土的蠕变变形因修建挡土墙或其他建筑物而被阻止时,作用在建筑物上的土压力就随时间逐渐增大。

土的压实性质 对土进行人工压实可提高强度、降低压缩性和渗透性。土的压实程度与压实功能、压实方法和含水量有关。当压实方法和功能不变时,土的干容重随含水量的增加而增加,达到最大值后,再增加含水量,其干容重将逐渐下降。对应于最大干容重时的含水量称最佳含水量。

压实功能不增大而仅增加压实次数或碾压次数所能提高土的压实度有一定限度,超过该限度再增加压实或碾压次数则无效果。填筑土堤,在最佳含水量附近可用最小的功能达到最大的干容重,因而要在室内通过压实试验确定填料的最佳含水量和最大干容重(见路基填土压实)。

但压实的方法也影响压实效果,对非粘性土,振动捣实的效果优于碾压;对粘土则反之。研究土的压实性能,可选择最合适的压实机具。为改善土的压实性能,可铺撒少量添加剂。中国古代已盛行掺加生石灰来改善土的压实性能。此外,人工控制填料的级配,也可达到改善压实性能的目的。



土的基本工程性质:(1)土的组成:土一般由土颗粒、水和空气组成。(2)土的物理性质:a.土的可松性和可松性系数 b.土的天然含水量 c.土的天然密度和干密度 d.土的空隙比和孔隙率 e.土的渗透系数

土的工程分类:一类土(松软土)、二类土(普通土)、三类土(坚土)、四类土(沙土)、五类土(软石)、六类土(次坚石)、七类土(坚石)、八类土(特坚石)

土的性质对土方施工的影响:(1)土的分类直接影响造价(2)渗透性影响边坡的稳定性和结构的水密性,也会影响施工的成本和进度

拓展资料

土是尚未固结成岩的松、软堆积物。主要为第四纪时的产物。土由岩石经历物理、化学、生物风化作用以及剥蚀、搬运、沉积作用交错复杂的自然环境中所生成的各类沉积物。土的固相主要是由大小不同形状各异的多种矿物颗粒构成的,对有些土来讲除矿物颗粒外还含有有机质。

土与岩石的根本区别是土不具有刚性的联结,物理状态多变,力学强度低等。土由各类岩石经风化作用而成。土位于地壳的表层,是人类工程经济活动的主要地质环境。土与岩石一起是工程岩土学的研究对象。方言中有土坷垃的别称。

土壤是一种自然体,由数层不同厚度的土层所构成,主要成分是矿物质。土壤和母质的差异主要是表现在形态特征或物理、化学、矿物等性质。在工程方面土壤被认为是表岩屑(regolith)或是松动的岩石物质。这种解释严格来说(或者以环境科学的角度来说)并不正确:土壤是由母质(岩石),经过风化作用后所形成的,其特性与母质不尽相同。土壤经由各种风化作用和生物的活动产生的矿物和有机物混合组成,存在着固体、气体和液体等状态。疏松的土壤微粒组合起来,形成充满间隙的土壤,而在这些孔隙中则含有溶解溶液(液体)和空气(气体) 。因此土壤通常被视为有三种状态 。大部分土壤的密度为1~2 g/cm³。地球上大多数的土壤,生成时间多晚于更新世,只有很少的土壤成分的生成年代早于第三纪。

作用

土壤不仅是粮食生产的承担者 ,也为人类提供了适宜的生态环境 ,是生物生存的重要载体 ,土壤中微量元素的含量反映了土壤对植物矿物质营养的供给水平 ,直接关系着天然和人工植被的生长发育 。土壤中任何一种微量元素的缺乏或过量 ,都会影响植物的生长发育 ,并导致农产品产量 、品质的下降 ,同时在一定程度上影响人类和动物的营养和健康。传统的土壤分析法是基于实验室的化学分析 ,这些分析方法为土壤研究提供了强有力的支撑 ,但由于土壤的复杂性 ,分析过程十分繁杂 ,多在破坏土壤原样的情况下才能实现 ,还会产生很大的化学污染 。

参考资料:土_百度百科



一、工程用土分类
(一)工程用土分类
1.依据《土的工程分类标准》GB/T 50145,工程用土指工程勘察、建筑物地基、堤坝填料和地基处理等涉及的土类,有机土指土料中大部分成分为有机物质的土。
(二)按照土的坚实系数分类
1.一类土,松软土
2.二类土,普通土
3.三类土,坚土
4.四类土,砂砾坚土
5.五类土,软土
以上五类土的详细介绍在这里因为用手机码字内容太多就不多解释了。
二、土的工程性质包括:
1.土的强度性质
2.土体应力应变
三、不良土质的危害
1.土体中各点的力学性质会因其物理状态的不均匀而不同,以此土体的剪切破坏可能是局部的,也可能是整体破坏。
2.需要解决的主要问题是提高地基承载力、土坡稳定性等。

土的基本性质及其对土方施工的影响是什么?~

工程范畴,土的基本性质是物理性能及力学性能。
土由矿物颗粒、水分、空气,三相(固体、液体、气体)构成,分散的水分、空气都是矿物颗粒间的空隙,占据了部分体积,使土体有密实与疏松之别。
物理性能主要包括比重、颗粒组成、孔隙比、吸水率、液性指标、塑性指标等等形成土的状态;力学性能主要包括内摩擦角φ、粘聚力C等指标,决定土的抗剪强度。
对土方工程施工影响直接:如预算按挖掘的难易,将土方分为松软土、普通土、坚土、砂砾坚土、软石、次坚石、坚石、特坚石八类,直接影响造价;又如淤泥、淤泥质、冲填质、腐殖质、杂填质、橡皮质等软弱地基,需除净换置,大大增加了工程的总量;特别在深基坑工程、高边坡工程等工程中,是为施工安全的重大危险源!

1.1



成  
土是岩石经风化、剥蚀、破碎、搬运、沉积等过程,在复杂的自然环境中所生成的各类松散沉积物。在漫长的地质历史中,地壳岩石在相互交替的地质作用下风化、破碎为散碎体,在风、水和重力等作用下,被搬运到一个新的位置沉积下来形成“沉积土”。  
风化作用与气温变化、雨雪、山洪、风、空气、生物活动等(也称为外力地质作用)密切相关,一般分为物理风化、化学风化和生物风化三种。由于气温变化,岩石胀缩开裂、崩解为碎块的属于物理风化,这种风化作用只改变颗粒的大小与形状,不改变原来的矿物成分,形成的土颗粒较大,称为原生矿物;由于水溶液、大气等因素影响,使岩石的矿物成分不断溶解水化、氧化、碳酸盐化引起岩石破碎的属于化学风化,这种风化作用使岩石原来的矿物成分发生改变,土的颗粒变的很细,称为次生矿物;由于动、植物和人类的活动使岩石破碎的属于生物风化,这种风化作用具有物理风化和化学风化的双重作用。  
土是自然、历史的产物。土的自然性是指土是由固相(土粒)、液相(粒间孔隙中的水)和气相(粒间孔隙中的气态物质)组成的三相体系。相对于弹性体、塑性体、流体等连续体,土体具有复杂的物理力学性质,易受温度、湿度、地下水等天然环境条件变动的影响。土的历史性是指天然土层的物理特征与土的生成过程有关,土的生成所经历的地质历史过程以及成因对天然土层性状有重要的影响。  
在地质学中,把地质年代划分为五大代(太古代、元古代、古生代、中生代和新生代),每代又分若干纪,每纪又分若干世。上述“沉积土”基本是在离我们最近的新生代第四纪(Q)形成的,因此我们也把土称为“第四纪沉积物”。由于沉积的历史不长,尚未胶结岩化,通常是松散软弱的多孔体,与岩石的性质有很大的差别。根据不同的成因条件,主要的第四纪沉积物有残积物、坡积物、洪积物、冲积物、海洋沉积物、湖泊沉积物、冰川沉积物及风积物等。  
1.2



成  
土是由固体颗粒、水和气体组成的三相分散体系。固体颗粒构成土的骨架,是三相体系中的主体,水和气体填充土骨架之间的空隙,土体三相组成中每一相的特性及三相比例
第1页
关系对土的性质有显著影响。  
1.2.1
土中固体颗粒  
土中固体颗粒的大小、形状、矿物成分及粒径大小的搭配情况是决定土的物理力学性质的主要因素。  
(1)粒组的划分  
自然界的土都是由大小不同的土粒所组成,土的粒径发生变化,其主要性质也相应发生变化。例如土的粒径从大到小,则可塑性从无到有;黏性从无到有;透水性从大到小;毛细水从无到有。工程上将各种不同的土粒按其粒径范围,划分为若干粒组,见表1—1。  
(2)颗粒级配  
土的颗粒级配是指大小土粒的搭配情况,通常以土中各个粒组的相对含量(即各粒组占土粒总量的百分数)来表示。  
天然土常常是不同粒组的混合物,其性质主要取决于不同粒组的相对含量。为了了解其颗粒级配情况,就需进行颗粒分析试验,工程上常用的方法有筛分法和密度计法两种。《土的分类标准》中规定:筛分法适用于粒径在60~0.075mm的土。它用一套孔径不同的标准筛,按从上至下筛孔逐渐减小放置,将称过重量的烘干土样放入,经筛析机振动将土粒分开,称出留在各筛上的土重,即可求出占土粒总重的百分数;密度计法适用于粒径小于0.075mm的土,根据粒径不同,在水中下沉速度也不同的特性,用密度计进行测定分析。  
将试验结果绘制颗粒级配曲线如图1-1所示,图中纵坐标表示小于(或大于)某粒径的土粒含量目分比;横坐标表示土粒的粒径,由于土体中粒径往往相差很大,为便于绘图,将粒径坐标取为对数坐标表示。  
从级配曲线a和b可看出,曲线。所代表的土样所含土粒粒径范围广,粒径大小相差悬殊,曲线较平缓;而曲线^所代表的土样所含土粒粒径范围窄,粒径较均匀,曲线较陡。当土粒粒径大小相差悬殊时,较大颗粒间的孔隙被较小的颗粒所填充,土的密实度较好,称为级配良好的土,粒径相差不大,较均匀时称为级配不良的土。  
为了定量反映土的级配特征,工程上常用两个级配指标来描述:
http://www.buildbook.com.cn/ebook/2007/B10029243/1.html

地基土(岩土)的分类与工程性质
答:2)变形条件。即控制基础沉降,使之不超过容许值。因此,在建筑物设计、施工之前、必须进行场地的勘探工作,是做好地基基础设计与施工的先决条件。(二)土的组成与分类 在地质勘探工作中,钻探施工的主要对象是岩土。因此,了解岩土的物理力学性质,对确定钻进、取心、钻孔冲洗方法及其护壁措施,正确选用施工机械...

什么是土的工程性质呢?
答:土质材料分为一般土和特殊土。一般土包括巨粒土、粗粒土、细粒土;特殊土包括黏土、膨胀土、黄土。一、土的工程性质 1、土的密度:(1)土的天然密度指在天然状态下单位体积的质量,称为土的天然密度。(2)土的干密度单位体积中土的固体颗粒的质量称为土的干密度。2、土的含水量:土的含水量 是土...

土方工程怎么分类?
答:根据土方开挖的难易程度不同,可将土石分为八类,以便选择施工方法和确定劳动量,为计算劳动力、机具及工程费用提供依据。1、一类土:松软土主要包括砂土、粉土、冲积砂土层、疏松的种植土、淤泥(泥炭)等,坚实系数为0.5~0.6,采用锹、锄头挖掘,少许用脚蹬。2、二类土:普通土主要包括粉质黏土;...

八大类土的分类标准
答:法律分析:在建筑工程中,土按其工程性质(坚硬程度和开挖方法及使用)可分为八类。一类土(松土)、二类土(普通土)、三类土(坚土)、四类土(砂砾坚土)、五类土(软土)、六类土(次坚石)、七类土(坚石)、八类土(特坚石)。法律依据:《中华人民共和国建筑法》 第六十二条 建筑工程...

公路工程中将土分为几类
答:土的工程地质分类是指在建筑施工中,按土石坚硬程度、施工开挖的难易将土石划分为八类,分别是松软土、普通土、坚土、砂砾坚土、软石、次坚石、坚石、特坚石。中国的土地目前大致有三种分类:1、按土地的自然属性分类,如按地貌、植被、土壤等进行分类。2、按土地的经济属性分类,如按土地的生产...

土的工程分为几类?
答:土的种类繁多,分类方法也很多。在建筑施工中,通常按照土的坚硬程度和开挖的难易程度将土分为八类。前四类为土,后四类为岩石。不同土的物理性质与力学性质不同,只有合理掌握八类土的特性及对施工的影响,才能正确选择土方开挖的施工方法。土的工程分类 ...

土的工程特性有哪些?
答:5.土的压实性质 :对土进行人工压实可提高强度、降低压缩性和渗透性。土的压实程度与压实功能、压实方法和含水量有关。6.土的动力性质 :土在岩爆、动力基础或地震等动力作用下的变形和强度特性与静荷载下有明显不同。土的动力性质主要指模量、阻尼、振动压密、动强度等,它与应变幅度的大小有关。

从施工的角度可以根据土的什么性质进行分类
答:在基础土石方工程的方法选用上,根据岩土的五项工程性能进行分类,分别为:1、内摩擦角 2、土抗剪强度 3、土的天然含水率 4、土的干密度 5、土的可松性 根据土的组成可分为粘性土、粉土、砾土、淤泥土等。根据土的状态可分为原状土、扰动土、腐殖土。

土的工程按工程性质分哪些
答:一类土(松软土):砂、略有粘性的砂土、腐植土及疏松的种植土、泥炭;二类土(普通土):潮湿的黏土和黄土、软的盐土和碱土、含有碎石卵石及建筑材料碎宵的堆积土和种植土;三类土(坚土):中等密实的粘性土或黄土、含有碎石卵石即建筑材料碎宵的潮湿粘性土或黄土;四类土(沙砾坚土):坚硬密实...

在建筑工程中,土按其工程性质(坚硬程度和开挖方法及使用工具)可分为那...
答:工程土方一般按开挖难易程度分为四类,也有分为八类的,据我所知工程中一般都是使用的四类分类,八类分法介绍下就是了:1、松软土;2、普通土;3、坚土;4、砂砾坚土;5、软石;6、次坚石;7、坚石;8、特坚石。四类土方一般说法是:能用铁锹直接开挖的就是一类土,用脚踩铁锹或者锄头能...