书上写弱碱性药物的解离公式时写BH+ =====(H+) + B【本来是可逆号我写了等 急!求一篇生物制药专业的毕业论文 课程有微生物 药物制剂 药...

作者&投稿:住诗 (若有异议请与网页底部的电邮联系)
弱碱是B
HB+是其结合一个质子后的产物,用其酸性表示B的碱性

搜一下:书上写弱碱性药物的解离公式时写BH+
=====(H+)
+
B【本来是可逆号我写了等

搜一下:书上写弱碱性药物的解离公式时写BH+
=====(H+)
+
B【本来是可逆号我写了等

大连理工《无机化学》课后习题解析~

★药物工程(初试信息)★药物工程(077621)101思想政治理论1国家统一命题。

★药物工程(077621)201英语一2国家统一命题。

★药物工程(077621)302数学二3国家统一命题。

★药物工程(077621)885有机化学及有机化学实验4《有机化学》(第二版),主编:高占先,高等教育出版社《基础化学实验》(第二版),编者:孟长功、辛剑,高等教育出版社★药物工程(复试信息)★药物工程(077621)面试加笔试药物合成反应《药物合成反应》,闻韧主编,第二版,化学工业出版社专业/领域简介:

药物工程硕士点师资力量雄厚,现有指导教师18人,其中教授9人,副教授6人。本专业先后承担多项国家和省部级科技攻关项目、国家新药创制重大科技专项及国家自然科学基金项目。

药物工程研究方向包括药物合成化学、天然药物化学、药物优化设计与计算、药物输送系统、药物生物技术等。主要在以下领域开展工作:1、化学合成药物及动植物、海洋生物和微生物天然先导化合物的发现;2、进行化学和天然药物的制备原理、合成路线、构效关系、生物效应、药物制剂研究;3、综合运用药理学、药剂学、分子生物学、生物化学、生物物理学、计算机应用技术、酶学和基因工程学等学科的知识和理论,研究药物与生物大分子之间的相互作用;4、通过药物合成、天然活性成分的分离纯化和结构测定,发现新先导化合物进行新药分子设计与计算、构效关系研究和现代药物输送技术研究,寻找、开发高效、低毒、质量可控的新药。

★药物工程(研究方向)

研究方向代码

研究方向名称

01合成药物化学

02药物优化设计与计算

03天然药物化学

04药物输送系统

05药物生物技术

  阿司匹林抵抗与基因多态性的研究进展
  【关键词】 阿司匹林抵抗;基因多态性

  阿司匹林作为一种有效的抗血小板聚集药物广泛应用于心脑血管疾病的防治,临床观察显示阿司匹林能减少约25%的心脑血管疾病复发。然而,并不是所有患者都能从阿司匹林治疗中获益,有研究显示0.4%~83.3%个体对阿司匹林的抗血小板作用不敏感,即存在阿司匹林抵抗现象(aspirin resistance,AR) [1]。阿司匹林抵抗的确切机制不明,遗传可能为其重要因素,本文将近年AR与基因多态性方面的研究作如下综述。

  1 阿司匹林抵抗

  1.1 阿司匹林抵抗的定义 Bhatt[2]等将阿司匹林抵抗分为临床性及生化性。临床性为患者口服阿司匹林后仍发生缺血性血管疾病;生化性为口服阿司匹林后,未能改变血小板功能试验结果。

  1.2 阿司匹林抵抗的分型 有研究[3]将生化性阿司匹林抵抗分为3型:(1)Ⅰ型阿司匹林抵抗(药动学型):口服同样剂量的阿司匹林,体内血栓素(TX)合成和胶原诱导血小板聚集均未被抑制。而体外富血小板血浆中加入100 μmol/L阿司匹林后可被抑制,提示使用小剂量阿司匹林有相当大的药动学差异。(2)Ⅱ型阿司匹林抵抗(药效学型):无论体内及体外,口服阿司匹林后,TX合成和胶原诱导血小板聚集均未被抑制,提示该型阿司匹林抵抗的机制与环氧化酶(COX)的遗传多态性有关。(3)Ⅲ型阿司匹林抵抗(假性阿司匹林抵抗):口服阿司匹林后能抑制TX合成,但不能抑制胶原诱导的血小板聚集。该型患者之所以被冠以“假性抵抗”,因为阿司匹林已抑制了TX合成,而不能抑制其他物质如胶原诱导的血小板聚集。

  2 阿司匹林抵抗机制

  AR发生的具体机制尚不清楚,可能与药物剂量不足[4],环氧化酶1(COX1)及血小板糖蛋白(GP)的基因多态性,胶原,吸烟,血脂异常等多种因素有关。血小板活化路径可由血栓素A2(thromboxaneA2,TXA2)、二磷酸腺苷(adenosine diphosphate,ADP) 、胶原、凝血酶和糖蛋白(glycoprotein,GP)Ⅱb/Ⅲa 受体等诱导,而阿司匹林仅能有效地阻断血栓素A2途径。目前,对于血小板活化路径及基因多态性与阿司匹林抵抗的关系研究主要集中在以下几个方面[56]:(1)血栓素激活途径中编码环氧合酶1 (cycloxygenase1 ,COX1) 的基因多态性。(2)GPⅡb/Ⅲa激活途径中编码血小板膜GPⅢa的血小板抗原1/血小板抗原2 (platelet antigen1/platelet antigen2,PLA1/PLA2)多态性。(3)胶原激活途径中编码血小板膜GPⅠa/GPⅡa的807C/T和873G/A多态性。(4)5二磷酸腺苷受体P2Y1的基因多态性。这些多态性位点有可能影响阿司匹林的抗血小板作用。现从基因水平分析阿司匹林抵抗的机制。

  2.1 环氧合酶基因多态性 COX是前列腺素合成过程中的重要限速酶,它有两种同工酶:COX1和COX2。COX1是花生四烯酸转换为前列腺素G/H途径中的第一个酶,其有两种酶活性,一种环氧化酶活性催化前列腺素G的生成,一种氢过氧化物酶(HOX)活性减少前列腺素G,生成前列腺素H,前列腺素H更进一步被COX催化成为前列腺素和血栓素[7]。阿司匹林抗血小板作用机制主要是使COX1丝氨酸530不可逆的乙酰化,从而使该酶失活,阻断了TXA2的形成。目前已发现多个COX基因多态性位点[8],不同COX的单核苷酸多态性(single nucleotide polymorphisms,SNPs)可影响COX的蛋白结构或构象,使其对阿司匹林抑制作用的敏感性极不均一,构成一些病人AR的结构基础。

  Maree等[9]将144位冠心病患者按COX1单核苷酸多态性分为五组[A842G,C22T(R8W),G128A(Q41Q),C644A(G213G) 和C714A(L237M)],均给予阿司匹林口服,发现A842G与C50T完全连锁不平衡。携带含有突变体842G等位基因的患者与野生型A842相比,花生四烯酸诱导的血小板激活和血清血栓烷B2 (TXB2 ,TXA2 的下游产物)产生更明显,提示携带突变体842G等位基因的患者对阿司匹林治疗较不敏感。表明COX1的遗传变异性可以影响花生四烯酸诱导的血小板聚集和血栓形成,病人对阿司匹林的反应部分决定于COX1的基因型。GonzalezConejero等[10]的研究则显示COX1 50T等位基因可能与阿司匹林抵抗有关。

  2.2 血小板糖蛋白(GP)Ⅱb/Ⅲa基因多态性 血小板糖蛋白GPⅡb/Ⅲa是细胞黏附受体整合素家族中的一员,含有纤维蛋白、纤维连接蛋白、von willbrand factor(vWF)等黏附蛋白的特异结合位点,参与血小板黏附和聚集。AR可能和血小板膜GPⅡb/Ⅲa受体复合物的多态性有关,GPⅡb/Ⅲa受体是血小板活化的最后共同通路。编码GPⅡb/Ⅲa的基因具有高度的多态性。GPⅡb/Ⅲa基因(包括编码GPⅡb和GPⅢa的基因) 突变、缺失或插入导致表型改变,进而引起血小板功能改变。迄今已发现C157T、A1163C、A1553G、T1565C等多个GPⅢa多态性位点,较为常见的是外显子2第1565位氨基酸的突变,即T1565C(Leu33Pro) ,编码Leo的位点称为PLA1(HPA1a),编码Pro的位点称为PLA2 (HPA1b)。关于GPⅡb基因多态性的研究较少,主要有GPⅡbMax/Max +(G2603A,V837M),HPA3a/3b(T2622G,Ile843Ser) ,GPⅡbG1063A(Glu324Lys) 等多态现象,其中研究最为广泛和深入的是GPⅡb残基843位Ile/Ser的变异,它与人类血小板抗原3 (HPA3) 相关。

  大量证据表明,GP受体多态性是动脉血栓形成的遗传危险因素,它能造成黏附受体成分的表达、功能和免疫遗传学的多样性。血小板激动剂(如TXA2)通过细胞内信号激活GPⅡb/Ⅲa受体,介导纤维蛋白原及其受体结合,然后促进血小板聚集。阿司匹林通过干扰COX非依赖性细胞内信号转导并使GPⅡb和GPⅢa分子乙酰化来抑制GPⅡb/Ⅲa的活化。尽管还未完全弄清,但目前所知的COX非依赖性信号转导途径可能包括跨膜蛋白受体、磷脂酶、Ca2 +释放、腺苷酸环化酶、鸟苷酸环化酶和蛋白激酶C等。某些弱的激动剂(如ADP、肾上腺素和胶原蛋白)导致的GPⅡb /Ⅲa激活可被阿司匹林部分抑制。在PLA2基因型存在时,抗血小板作用可以因这种替代途径减少而降低。

  Agnieszka Slowik等[11]研究发现PLA2等位基因是男性患者大血管病变所致卒中独立的危险因素。该研究分别选取92例大血管病变所致卒中患者及184例对照者,103例小血管病变所致卒中患者及206例对照者,182例心因性卒中患者及182例对照者。结果显示小血管病变及心因性卒中患者与对照者相比,PLA2等位基因出现的频率相似,无统计学意义;而大血管病变所致卒中的男性患者PLA2出现频率高(39.7% vs 23.0%;P=0.003 ,OR=2.51;CI为1.21~5.20)。Grove等[12]检测了1191例健康人和1019例冠心病患者的PLA2频率,在这些患者中529例以前有过心肌梗死史。结果健康人中28%为PLA2基因型,28%的冠心病患者(除外心肌梗死患者)为PLA2基因型,35%的心肌梗死患者为PLA2阳性。健康对照与心肌梗死患者之间PLA2基因频率有统计学差异。因此,他们认为斯堪的纳维亚人PLA2基因型与心肌梗死而不是冠心病的危险增加有关。Szczeklik A研究的结果提示与PLA1相比,PLA2等位基因更倾向于促进血栓的形成从而参与了阿司匹林抵抗的发生。Papp E等[13]研究也发现,阿司匹林抵抗患者中PLA2等位基因出现的频率要明显高于那些对阿司匹林有良好反应的受试者,而且该研究中所有PLA2/A2 基因型患者对阿司匹林的抗血小板反应均不良。这就提示PLA2等位基因可能与阿司匹林疗法反应的不充分、不敏感相关。然而,Macchi等[14]的研究发现PLA1等位基因更容易对小剂量阿司匹林治疗发生抵抗。

  2.3 血小板糖蛋白GPⅠa/Ⅱa受体基因多态性 GPⅠa/Ⅱa (整合素α2β1 )位于连接血小板与胶原纤维(Ⅰ、Ⅱ型)或非胶原纤维( Ⅲ、Ⅳ型)的二价阳离子键的中间。在正常个体与那些先天遗传存在α2基因的四个等位基因的个体中,其血小板表面表达的GPIa/Ⅱa是不同的。GPIa基因位于第5号染色体上,对于这一基因的一些相关研究,揭示它的一些有症状或无症状的多态现象,以及由此引起的受体的结构和功能的改变,以及血小板表面的GPⅠa/Ⅱa受体多拷贝间的差异。α2GPIa多态性—807CT(phe224)和873GA(Thr246)已被证实与血小板表面受体不同的表达有关。基因型807TT(873AA)与受体的高密度表达有关,而807CC(873GG)则与低密度表达有关。杂合子则与中间受体表达的水平有关。第三种多态性是由于1648位点上G到A被替换所致,这同时也引起505位点(Br系统)上Glu/Lys被替换。同时,GPIa807C/T与Glu505 lys之间存在基因相关,且Br的多态性与位于核苷酸环化酶837(CT)上的一个稀有多态性相连结,携带等位基因I(807T/873T/873A /Brb)者表现出高水平的GPⅠa/Ⅱa,而携带等位基因Ⅱ(807C /837T/873G/Brb)和Ⅲ(807C/837C/873G/Bra)者则表现出低水平的血小板整合素。胶原是一种重要的血小板聚集诱导剂,血小板胶原受体血小板膜糖蛋白Ⅰa/Ⅱa密度增加可能是血栓形成的潜在危险因素和阿司匹林抵抗的原因,血小板膜糖蛋白Ⅰa/Ⅱa基因多态性可以增加血小板膜胶原受体的密度[15],从而降低阿司匹林疗效。

  2.4 ADP受体P2Y1基因的变化 ADP是血小板聚集的重要介质,ADP的调节作用是通过与血小板表面G蛋白偶联P2Y受体相连接而实现的。迄今为止已有8种P2Y受体亚型被克隆,对P2Y1和P2Y12的研究较清楚。Gαq偶联P2Y1受体与ADP结合,使钙离子释放,改变血小板形状,使血小板聚集。另一种主要的受体P2Y12与G蛋白Gi偶联,抑制腺苷酸环化酶,活化磷酸肌酸激酶3,活化GPⅡb/Ⅲa受体。任何一个受体的抑制均会引起血小板聚集的显著减少。

  ADP通过P2Y1和P2Y12受体刺激血小板的激活和聚集,这些受体的突变与止血异常有关,任何一个受体的抑制均会引起血小板聚集的显著减少。阿司匹林以协同方式减少这些情况的发生[16]。P2Y12和阿司匹林的复合拮抗作用已在临床上被证实可显著减少血栓事件的发生[17]。因此,ADP受体P2Y1基因的相应功能变化能够改变ADP的信号功能,并且能降低对阿司匹林(包括P2Y12抑制剂,如噻氯匹啶和氯吡格雷)的反应性,导致血栓前状态的产生和对阿司匹林的反应性降低。

  Fontana等[18]在98名健康研究对象中发现了P2Y12受体5种多态性,其中4种是完全连锁不平衡。这导致两种单倍体产生,H1 (86%)和H2 (14% ) 。携带H2单倍体的受试者使用较低浓度的ADP (2 μm) ,血小板聚集增多。纯合子H1 (H1 /H1)平均聚集率为34. 7% (n= 74) ,有一个H2等位基因(H1 /H2,n= 21)聚集率为67. 9% ,在有2个H2等位基因(H2 /H2,n=3)聚集率高达82. 5%。这提示P2Y12多态性在阿司匹林抵抗中可能起作用。近来发现P2Y1 受体A1622G多态性与血小板对ADP反应不同相关。携带少见的G等位基因对ADP反应更强。Jefferson等[19]在332例男性有心肌梗死史的患者中研究发现阿司匹林抵抗患者与P2Y1基因C893T多态性密切相关。携带杂合子C893T等位基因患者与携带常见纯合子C893等位基因者相比阿司匹林抵抗率高出3倍,机制尚不清楚。

  以上综述了近年来关于基因多态性与阿司匹林抵抗关系的研究结果。由于没有国际公认的对阿司匹林抵抗的定义,多数研究样本量较小,研究结果间还存在很多矛盾,迄今为止遗传对阿司匹林抵抗的作用并不确切。所以仍需继续开展大规模和不同种族人群中的前瞻性研究来证实这些基因多态性与AR有关。

  【参考文献】
  [1] Lordkipanidze M,Pharand C, Palisaitis DA, et al. Aspirin resistance:truth or dare[J].Pharmacol Ther,2006,112:733743.

  [2] Bhatt D, Topol EJ. Scientific and therapeutic advances in antiplatelet therapy[J].Nature Rev,2003,2:1528.

  [3] WeberA A, Przytulski B, Schanz A, et al. Towards a definition of aspirin resistance: a typological approach[J]. Platelets,2002,13:3740.

  [4] Lee PY, Chen WH, Ng W, et al. Lowdose aspirin increases aspirin resistance in patients with coronary artery disease[J].Am J Med,2005,118:723727.

  [5] Zczeklik A , Musia J , Undas A , et al. Aspirin resistance [J].J ThrombHaemost,2005,3 : 16551662.

  [6] Horiuchi H.Recent advance in antiplatelet therapy: the mechanisms, evidence and approach to the problems [J]. Ann Med,2006,38 : 162172.

  [7] CambriaKiely JA, Gandhi PJ. Possible mechanisms of aspirin resistance [J]. J Thromb Thrombol,2002,13:4956.

  [8] Ulrich CM, Bigler J, Sibert J, et al. Cyclooxygenase 1 (COX1) polymorphisms in AfricanAmerican and Caucasian populations[J].Hum Mutat,2002,5:409410.

  [9] Maree AO, Curtin RJ , Chubb A, et al. Cyclooxygenase1 hap lotype modulates platelet response to aspirin[J]. J Thromb Haemost,2005,3: 2 3402 345.

  [10] GonzalezConejero R, Rivera J, Corral J, et al. Biological assessment of aspirin efficacy on healthy individuals: heterogeneous response or aspirin failure [J] . Stroke,2005,36 : 276280.

  [11] Agnieszka Slowik, Tomasz Dziedzic, et al. A2 alelle of gp3a gene is a risk factor for strok caused by largevessele disease in males[J]. Stroke,2004,35:1 5891 593.

  [12] Grove EL , Orntoft TF ,Lassen JF , et al . The platelet polymorphism PLA2 is a genetic risk factor for myocardial infarction [J] . J Intern Med,2004 ,255 :637644.

  [13] Papp E, Havasi V, Bene J, et al. Glycoprotein 3A gene (PlA) polymorphism and aspirin resistance: is there any correlation[J].Ann Pharmacother,2005,39:1 0131 018.

  [14] Macchi L, Christiaens L, Brabant S, et al. Resistance in vitro to low dose aspirin is associated with platelet PlA1 (GP 3a) polymorphism but not with C807T (GP 1a/4a) and C5T Kozak (GP 1ba) polymorphisms[J].J Am Coll Cardiol,2003,42:1 1151 119.

  [15] Kunicki TJ, Orchekowski R, Annis D,et al. Variability of integrin α2β1 activity on human platelets[J].Blood,1993,82: 2 6932 703.

  [16] Andre P, LaRocca T, Delaney SM, et al. Anticoagulants ( thrombin inhibitors) and aspirin synergize with P2Y12 receptor antagonism in thrombosis [J].Circulation,2003,108: 2 6972 703.

  [17] Steinhubl SR, Berger PB, Mann JT , et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial[J]. JAMA,2002,288: 2 4112 420.

  [18] Fontana P,DupontA, Gandrille S, et al. Adenosine diphosphateinduced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects[J].Circulation,2003,108: 989995.

  [19] Jefferson BK, Foster JH,McCarthy JJ , et al. Aspirin resistance and a single gene[J]. Am J Cardiol,2005,95: 805808.

某弱碱性药的PKa是7.9,在PH6.9时其解离型所占比例接近哪一种情况?答...
答:弱碱药物时:lg(未解离/解离)=ph-pka 带入数据,lg(未解离/解离)= -1。解得,未解离/解离=1/10 题目所问解离占多少比例,那么即,解离约占90

为什么弱酸性药物在碱性环境中解离度大
答:如尿素、乙醇)、脂溶性的分子等易通过质膜,大的不带电的极性分子(如葡萄糖)和各种带电的极性分子都难以通过质膜。多数药物为弱酸性或弱碱性药物,在体内会解离而影响吸收,弱酸性药物在酸性环境下解离少,非解离型多,易通过生物膜,弱碱性药物相反。以上内容参考:百度百科-解离 ...

某弱碱性药在ph 5.0时,它的非解离部分为90.9%,该药的pka接近哪个...
答:非解离型少。这个非解离部分90%,肯定是酸性药物呀。所以pka等于6。按照碱性药物转换过来时公式pka=PH+lg解离/非解离,其中的非解离部分指的是离子型(在解离公式里理解)这样就说的通为什么弱碱性药在酸性环境下非解离部分占比比较多。(这里要与书上分子型=非解离型区分一下)...

什么是解离度?
答:反映了电解质的解离程度。解离度常用希腊字母{\displaystyle \alpha }表示,它与范特霍夫系数{\displaystyle i}具有如下关系:{\displaystyle i=1+\alpha (n-1)}(n为解离出的离子数)例子 KCl ⇌ K+ + Cl-此时{\displaystyle n=2},公式变为{\displaystyle i=1+\alpha 。

一个pKa=8.4的弱酸性药物在血浆中的解离度为
答:由血浆PH=7.4求的血浆中OH根的浓度为10^(-6.6) ,由碱性药物PKa=8.4求的PKb=14-8.4=5.6, [A][OH]/([AOH]-[A])=PKb。这里的[AOH]为原来药物的的浓度; [A]为已解离得浓度;[OH]为血浆中OH浓度 ,代入式中得 [A]/([AOH]-[A])=10,然后把式子左右分子分母调换即[AOH]...

这题怎么选 弱碱性药物
答:选择 D 。弱碱性药物在酸性条件下解离,离子形式不容易透过细胞膜。胃中呈酸性,故不易吸收弱碱性药物。酸化尿液时药物都解离为离子形式,不易重吸收、加速排泄。碱化尿液时,药物为原有形式,易被重吸收。

请分析尿液的酸碱性对酸碱性药物排泄的影响,请注明解离度,脂溶性...
答:对pKa大于8的弱酸,在尿液环境下几乎不解离,清除率始终较低;对于pKa大于12的强碱性药物,尿液环境处于解离状态,清除率不受尿液pH影响。对于pKa介于6-12的弱碱性药物来说,随着pH升高,药物解离度减小,重吸收增加,肾清除率减少。对于pKa小于等于6的弱碱非极性药物,其非解离部分几乎都被重吸收。实例...

药物在体内的解离程度由什么决定
答:少数含金属的药物会被人体二度利用。强碱性物质在胃液中与胃酸(盐酸HCl)发生中和反应,生成盐和水。可溶性盐在胃液中会以离子形式存在,难溶性的盐则会以分子形式存在。吸收是有的,只不过吸收的程度因物质的其他性质(分子、离子的大小,细胞载体的多寡及亲和程度,脂溶性)而不同。

尿液呈碱性时,弱碱性药物
答:【答案】:C 弱碱性药物在碱性尿液中,解离小,药物主要以分子形式存在,易被人体重吸收使重吸收量增加,而排泄最减少。

药物在体内的解离程度由什么决定
答:少数含金属的药物会被人体二度利用。强碱性物质在胃液中与胃酸(盐酸HCl)发生中和反应,生成盐和水。可溶性盐在胃液中会以离子形式存在,难溶性的盐则会以分子形式存在。吸收是有的,只不过吸收的程度因物质的其他性质(分子、离子的大小,细胞载体的多寡及亲和程度,脂溶性)而不同。