东翼区水文地质条件 区域水文地质调查

作者&投稿:柞柏 (若有异议请与网页底部的电邮联系)

本课题研究的区域为东翼区,下面主要阐述东翼区的水文地质条件。

7.2.3.1 东翼区边界条件

东翼区位于五矿东部,介于F11断层(断距30~180 m)和F12断层(断距为80~120m)之间,两条断层在井田南北边界处相交,受F11断层和F12断层的包围,从整体上看该区在平面上呈一“枣核状”。东翼区南北长2400 m,东西最宽处约700 m,面积1.1 km2。由于F11、F12断层呈阶梯状上升排列,使得东翼区在剖面上东部呈阶梯状抬起。受F11、F12断层的封闭式包围,本区成为一相对独立的封闭地段(图7.15)。

图7.15 五矿东翼区边界图

7.2.3.2 东翼区含水层

东翼区主要含水层为大青含水层和奥灰强含水层。

(1)大青含水层

大青灰岩厚度4~6 m,平均5m,走向近SN,倾斜平缓,倾角10°左右。东翼区大青灰岩单孔出水量一般为0.1~0.3 m3/min,最大为2.8 m3/min(FD34)。大青灰岩为裂隙岩溶承压含水层,上覆岩层为厚度34~50 m的砂页岩,下伏岩层为厚度30 m的砂页岩夹煤层,再向下为奥陶系灰岩强含水层。东翼区断裂构造非常发育. 受构造影响,下伏隔水层的隔水性能变弱,而下部又有高压奥陶系灰岩水的顶托,因此具有形成奥陶系灰岩水向上越流补给大青水的条件。大青含水层的补给来源为奥陶系灰岩水。1996年东翼区大青放水试验,在东翼区奥灰FO8孔投放荧光黄3kg,东翼区大青FD34、FD16孔先后收到,也证明了这一点。

1996年4月东翼区大青放水试验,放水量为1.2~1.6 m3/min,时间为7d,水位降深东翼区大青普遍大于20 m,FD34孔放水孔最大降深达83 m(图7.16)。

通过1996年的东翼区大青放水试验,可以得出大青含水层具有贮存水量不大,补给量有限,易于疏干等特点。通过数值模拟还得到东翼区大青灰岩的导水系数、贮水系数和越流系数(表7.20)。

图7.16 东翼区1996年大青放水降深图

表7.20 东翼区大青灰岩含水层参数表

(2)奥灰强含水层

奥灰强含水层为峰峰煤田煤系地层基底,厚584 m左右。根据岩性可分为三组八段,富水性各段差异很大。据勘探资料证实,二、四、五、七段为强含水段,其余为弱含水段。在东翼区范围内,目前奥灰水位标高在+120 m左右,每年雨季水位升高。

奥灰含水层,岩溶裂隙十分发育、富水性极强。受断裂构造切割,是煤系地层内各薄层灰岩含水层的主要补给水源。

根据矿区奥灰勘探钻孔资料,顶部第八段厚度15~20 m,裂隙被充填,钻孔涌水量1.5~3 m3/min,第七段厚度85 m左右,钻孔见溶洞0.5 m左右,由于均系地表勘探钻孔揭露,没有做抽、压水试验,难以获得更多的资料。

奥灰水质类型,属HCO3·SO4-Ca·Mg型水,矿化度0.5g/L。

井田内奥灰水文地质资料较少,东翼区奥灰水文地质资料更少。

7.2.3.3 东翼区隔水层

(1)二叠系泥岩隔水层

1)上石盒子组泥岩、砂质泥岩,岩石完整,隔水性好。

2)由2号煤层、底板泥岩、砂质泥岩组成,其中2煤层底板(砂质泥岩)是主要隔水层。

(2)石炭系砂页岩隔水层

石炭系砂页岩,埋深较大时,岩性致密,裂隙甚少,透水性弱,属良好的隔水层。



水文地质条件~

1.含水层及其特征
在矿区,地下水含水层系统包括侏罗-三叠系阿加德兹群砂岩含水层系统和二叠系伊泽固安达组长石砂岩含水层系统。

图8-9 研究区花岗岩的分布与铀的来源示意图

第一含水层系统侏罗-三叠系阿加德兹群砂岩层在阿泽里克穹窿中部缺失,主要分布在以穹窿断裂构造带为界的外部地区。在穹窿西翼、北翼和东翼,阿加德兹群砂岩层均出露地表,呈狭长带状,与大气降水相连,在雨季有一定的降水补给。该含水层受穹窿和断裂构造作用的影响,地下水在部分地段富存。在穹窿东翼,阿加德兹群砂岩与其顶部阿萨乌阿组砂岩出露地表,区域断裂形成的次级断裂和裂隙发育,成为导水和阻水构造,在其附近形成泉群。阿泽里克村附近的泉群就是在次级断裂裂隙的导通下出露地表形成众多涌泉。在穹窿北翼,IR矿床区,该含水层埋深达200m以上。在穹窿西翼和西北翼G矿床和T矿床分布区,含水层系统部分出露地表,沿岩层倾向逐渐变深,主矿体含水层系统埋深分别为60m和70m以下。在穹窿南翼,由于地层整体下沉,该含水层系统深埋于地下。受区域性地下水补给作用,在断裂构造的阻隔作用下,南翼成为很好的含水层储水地带,地下水相对富集。
第二含水层系统为二叠系伊泽固安达组长石砂岩含水层。该含水层系统在穹窿核部为潜水含水层,在穹窿核部,因伊泽固安达组砂岩含水层隔水顶板被剥蚀,砂岩大面积出露地表,成为潜水含水层。Gueleli村东部和Teguida-In-Tessoum村附近出现的涌泉,即为该含水层地下水。而在矿区其他部位,该含水层系统均深埋于地下,为深层承压含水层。在穹窿南部,该层地下水含水层系统埋深在200m以下。
2.矿区水文地质特征
在矿区,分布有T矿、G矿和IR矿3个矿床。这3个矿床含铀矿层均为下白垩统阿萨乌阿组砂岩层,该岩层多为致密粉砂岩和细砂岩,其透水性较弱,含水量较少。而其底部则为矿区的第一含水层阿加德兹群砂岩含水层,为承压含水层,其承压水头高度较高,均接近地表,部分地段高出地表。
(1)T矿床水文地质
在T矿床,含水层岩性为细砂岩、(中)细粒砂岩、(中)粗粒砂岩,厚度在7.5~14.6m之间。在矿床范围内随着岩层走向其深度逐渐加深,厚度有所变化,岩性总体变化不大。从T矿床岩心取样资料来看,该岩层断裂裂隙不发育,而节理、层理发育,在垂直方向自上而下岩石组成颗粒逐渐变粗,且胶结固化度降低,孔隙度增大,表明含水层越往底部渗透性越好,储水能力越优良。
T矿床含水层顶板隔水层主要为白垩系泥岩、粉砂质泥岩,沿走向及倾向岩性变化不大。从整体上看(除穹隆顶部被剥蚀外)含水层隔水顶板厚度较大,胶结固化程度较高,隔水性较好。而含水层隔水底板也为泥岩和粉砂质泥岩,胶结较致密。
T矿床含矿层地下水为承压水。根据T矿床内水文孔SHW-T2资料,T矿床顶板地下埋深为68.93m,地下水承压水位为地面以下11.7m。
T矿床地下水为弱碱性微咸水,pH值为8.8,水温23.9℃,无色透明,总矿化度为2.27g/L,总硬度为78.4mg/L,属软水。按地下水离子成分含量,其水质类型为Cl-HCO3-Na型,即氯重碳酸钠型水;按成因类型分类,其地下水类型为NaHCO3型,为苏打化区地下水,表明为陆相成因。
(2)G矿床水文地质
G矿床位于背斜构造西翼,区域性阿泽里克断裂构造西端的尾部。由于受东西向区块的挤压,断裂构造末端变异、错断,断距达750m,次级构造发育且无序,呈网格状展布。由于矿床含水层地下水为区域性补给,这些构造无疑加大了地下水的水力联系,含水层厚度加厚为13.5~23.1m。
G矿床含矿层阿萨乌阿组砂岩含水层因受构造作用,从地表出露处沿岩层倾向逐步埋深于地下深部。其隔水顶板与区域地质条件相同,为白垩系伊腊泽尔组泥岩和粉砂质泥岩,是良好的隔水层顶板;其底部因与矿区第一含水层侏罗-三叠系阿加德兹群砂岩含水层连通,涌水量较大,受次级构造影响,水文地质条件较为复杂。
G矿床第一含水层地下水为承压水。根据SHW-G2水文孔资料,其顶板埋深为59.50m,承压水位高度溢出地表,为承压自流。地下水为弱碱性咸水,无色透明,pH值为8.6,水温28℃,矿化度为6.57g/L,总硬度为40.24mg/L,属极软水。按地下水离子成分含量,其水质类型为Cl-Na型,即氯化钠型水;按成因类型分类,其地下水类型为NaHCO3型,为苏打化区地下水,表明为陆相成因。
(3)IR矿床水文地质
在IR矿,含矿层分布于下白垩统下部阿萨乌阿组的砂岩中,其底部为侏罗-三叠系阿加德兹群砂岩第一含水层;顶部为白垩系伊腊泽尔组红褐色泥岩,沿岩层倾向逐渐加深,至主矿床顶板埋深在190多米,是良好的隔水顶板。在近地表的第四系松散堆积层中,孔隙度较大,但是其上部多为隔水较好的黏土层,含水量极少。
IR矿分为两个含水层:其一为第四系洪积含水层,其补给来源于大气降水,地下水位随季节的变化而变化。雨季地下涌水量增加,枯水期地下涌水量减少;其二为阿萨乌阿组砂岩弱含水层,从不同水文孔承压水头高度不同情况来看,其地下水补给来源主要来自底部侏罗-三叠系阿加德兹群砂岩组第一含水层越流补给和区域性地下水补给。
含水层岩性主要为细砂岩、(中)细粒砂岩和(中)粗粒砂岩。在矿床范围内只在深度和厚度上有所变化,岩性变化不大。从岩心地质编录资料来看,断裂构造不甚发育,节理、层理发育,充填物多为钙质,含水层厚8~16m,沿垂直方向自上而下岩石颗粒逐渐变粗,且自上而下胶结固化度降低,空隙度加大。
顶底板隔水层岩性主要为灰色泥岩、灰褐色粉砂质泥岩,硅质胶结,沿走向及倾向上岩性变化不大,从整体上看顶板厚3~5m,大于底板厚度,胶结固化程度高,底板次之。
IR矿床地下水为弱碱性咸水,无色透明,pH值为8.4,水温23.60℃,矿化度为9.06g/L,总硬度为78.4mg/L,属软水。按地下水离子成分含量,其水质类型为Cl-Na型,即氯化钠型水;按成因类型分类,其地下水类型为NaHCO3型,为苏打化区地下水。

该阶段主要有两部分工作,一是进行综合水文地质调查,二是查明含油气盆地内油气的浅层地球化学效应。
查明自流水盆地区域水文地质条件,是一项综合性很强的石油-水文地质调查工作,其主要任务是在油气勘探程度较低的地区(盆地);通过野外水文地质基础调查,对地下水的分布与形成获得初步认识,为盆地区域含油气远景评价、油气勘探与开发以及工业、生活等各类供水提供必要的水文地质资料。主要调查内容包括以下几方面。
1.地形地貌条件调查
自流水盆地具有特殊的地形地貌景观,即周边为山地环绕,中部为低平的平原,地形高差相差悬殊。山区水资源比较丰富,主要来源于冰雪融化和大气降水,并以地表水的形式,在山前或断裂破碎带补给地下水,向盆地内部汇集。从四周山麓到盆地中心,水动力和水化学成分具有典型的分带现象。从宏观上讲,地形地貌条件控制着盆地内地下水的补给、形成、流量、动态及水化学成分的演变。在自然条件下,地下水流系统的形态,主要同地形和地质构造有关。地形地貌调查的主要内容有:
查明区域总地形地貌的景观、成因类型、地貌形态的变化规律;新构造运动的地貌标志与特征;同地形地貌有关的近代地质作用及其性质(滑坡、泥石流、潜蚀、侵蚀切割、逆源侵蚀、沼泽化、喀斯特化等现象)。在上述调查基础上,编制自流水盆地的地貌图,图件除表示出地貌成因类型、分布外,还要标出地形分水岭和风化(残积)带的范围及其具体位置——地下水体的约束边界、集水面积、自流水盆地边界等。
以柴达木盆地的实例,说明地形地貌条件与水文地质条件的关系(图1-15)。该盆地是青藏高原东北部一个大型封闭的内陆盆地,南边为昆仑山脉,东北部为祁连山脉,西北部为阿尔金山脉。这些山脉的海拔在3500~5500m之间。而盆地内部高程一般为2600~3000m,具有西北高、东南低的特点。盆地周边高山的冰雪在夏季融化后,是盆地内地表水和地下水的丰富补给源。盆地内部气候干旱,多风少雨,一般年降水量为50~150mm,有的地区不足20mm。而且蒸发很强烈,年蒸发度在2000~3000mm之间。因此,在盆地内部大气降水对地下水的形成没有实际意义。

图1-15 柴达木盆地水文地质剖面图

柴达木盆地为一大型中、新生代陆相沉积盆地,第三系是油气的主要勘探目的层,储集层岩性主要为砂质岩,缝洞比较发育,分布有丰富的地下水。第四系晚更新统天然气伴有浅层承压水。
由于中新生代时期的构造运动,使整个盆地被分割成许多次一级的小盆地,每个小盆地都有各自独立的汇水流域。因此,由四周山区流入盆地的地表水系没有形成单一的汇水中心,而是形成许多湖泊,这些湖泊洼地都是地表水和地下水的汇水中心,也是盆地地下水的循环基准面。
盆地四周山区的水资源是丰富的,来源于冰雪融化水和降水,在巨大的地形高差促使下,以河流形式注入盆地,在山前大量的补给地下水。季节性的河流在出山口5~10km的地段上就消耗尽了。据统计,河流流经山前平原时,渗漏损耗量占总径流量的29%~70%,甚至达100%。
总之,柴达木盆地从四周山麓向盆地中心,在水动力循环和水化学特征上,都具有典型的分带现象。
2.石油地质结构调查
按一定比例尺的精度进行地质-水文地质填图。在山区地层出露区,查明地层时代、分布范围、岩石性质与结构,特别注意砂岩、泥岩层及比例与相互配置关系,识别可能的油气生、储、盖层或含水层;查明不同时代的接触关系、侵入岩与围岩的接触特征、火成岩与变质岩的发育程度;了解构造特征——断层、褶皱、裂隙的发育程度、时代、性质、延伸方向、大小规模及破碎的范围、充填胶结物情况。在盆内部平原区,主要依据井、试坑等手段,了解第四系沉积物岩性、厚度等。要重视和借助于地球物理技术手段与资料,调查有关地质、水文地质问题。
提交自流水盆地范围内的地质图(基岩地质与第四纪地质图),还要在图上表示出地形与地质两个要素之间的关系。
3.水文地质调查
应用水文地质测绘、水文地质勘探、水文地质试验及水文地质长期观测等方法,查明区域地下水的分布与形成、水动力条件、水化学成分变化规律及其与油气地质相关联的水文地质问题。
水文地质测绘以地面调查为主,一般从山区开始,然后再推向山前与平原。调查内容包括:地质、地貌、第四纪地质、地下水露头、地表水体、物理地质现象乃至植物等。
水文地质勘探是借助于试坑、探井、钻探、硐探等勘探手段,查明深部含水层的数目、岩性、厚度、富水性能、水位、化学成分等。
水文地质试验包括室内试验和野外试验两部分。前者主要是分析测试地下水化学成分、岩石水理性质与颗粒成分、岩石孔隙度与渗透率、岩溶试验等;后者则有抽水、压水、注水、渗水、地下水流向与流速测定等。通过上述试验,对地下水的水质与水量进行定量的判断。
水文地质长期观测,由于地下水是活动易变的流体,需要选择有代表性和能说明问题的水文地质点或剖面进行长期观测,借以了解和掌握地下水的动态变化规律,进行地下水均衡的研究。
除上述方法外,还经常应用地球物理方法,如电法(电测井、电测深等),研究地下水的埋藏深度、厚度、含水层之间的相互补给关系及补给量、地下水的流速与流向等。
通过上述调查对地下水本身以及与地下水活动有关的各种自然现象进行综合研究。在地层岩性方面,要掌握不同时代岩层的含水性能、岩层的胶结情况、裂隙发育程度、喀斯特发育程度、泉的涌水量、井的水量、隔水层;在侵入岩的分布区,尽量划分出岩相上有差别的各带(如粗粒或细粒的花岗岩、斑状花岗岩等),并分别确定各个带的富水性;对于大片变质岩发育的地区,尽量按其岩性、变质程度、年代等圈出不同的层次,并确定其富水性。
地质构造对地下水的埋藏条件有很大的影响,除了解裂隙对富水性的控制外,要通过多种方法确定断层的导水性能(有无泉水出露、渗水与漏水现象、充填物情况等),对侵入岩与围岩的接触带、岩脉与围岩的接触关系要了解其是否导水性等。
在水文方面,要查明地表水与地下水的关系,对地下水的天然露头——泉水及有代表性民用井(水位、水量、水质和水温等)进行调查。
最后,编制水文地质图,在图上要表示出地形、地质及地下水三个要素之间的相互关系,表示出地下水的性质与有关参数(地下水位、涌水量、埋藏深度、化学成分、水温等);还要包括:基岩地质(年代、岩性、产状、构造),第四纪地质(年代、岩性、成因类型)、岩石富水性能(隔水层、含水层、富水程度)、地貌(成因、类型)、地下水特征(埋深、水位、流向、流速、化学成分等)、控制点(代表井、泉、钻孔、涌水量、成分、水位等)、水文地质分区、水文地质剖面等。
利用上述区域水文地质调查取得的资料,根据水动力场与水化学成分特征,结合地球物理成果,可为盆地早期含油气远景预测评价提供水文地质依据(图1-16)。例如合肥盆地舒城凹陷油气勘探程度很低,区域水文地质调查结果认为,本区有一定的含油气远景,指出油气聚集最有利区集中在东部的花岗、千人桥、三河镇一带,是本区油气勘探的突破口,水文地质成果起到先导作用,引起勘查家的关注。

图1-16 舒城凹陷含油气远景预测图

油气浅层地球化学效应是含油气盆地中一种独具风貌的现象。石油与天然气是流动性很强的液体矿床,其化学成分决定了它的不稳定性和易挥发的特点。在温度、压力等不均衡因素的控制下,油气水始终保持着自下而上的垂向微运移的势态。因此,在近地表形成与油有关的地球化学形迹。
在区域水文地质调查中,按照一定的网度(线距与点距)采集有代表性的水样(民用井或泉水),通过检测与油气组分有成因联系的直接指标、反映水文地球化学场特征的环境(间接)指标以及能确认地下水来源的成因指标,进行综合研究,不仅在已知油田上方获得清晰和高强度的浅层地球化学效应,而且为油气勘探部署提供了依据和方向。
图1-17是松辽盆地南部红岗油田的浅层水化学效应,该油田是龙虎泡-红岗阶地南端的一个背斜带,背斜轴向NNE,西翼较陡,以断层与西部斜坡相接,东翼较缓。具有多套油气层和埋藏浅的特点(主要生产层的埋藏深度为1200m),其上分布有明水组气藏,埋深400m。地形自西向东倾斜,地下水沿地形倾斜方向流动。选择相对比较稳定的全新统下部含水层为主要研究对象,含水层岩性为粉细砂岩。按普查阶段的网度采取水样,各种水化学组分的浓度分布如表1-2所示。

图1-17 红岗油田浅层水化学效应

1—含油构造;2—断层;3—可溶气态烃三次趋势面(μL/L);4—矿化度四次趋势面剩余异常值大于500mg/L的点
主要水化学指标在油田上方及其周边较高,叠合程度好。在宏观上,浅层效应的形态与含油构造极为相似。可溶气态烃的甲烷碳同位素比较重,在-42‰左右,说明浅层水化学效应的形成与油气藏有成因上的联系。

表1-2 红岗油田内外水化学成分对比表

注:分子-最小值;分母-最大值。
泌阳凹陷的油田浅层水化学效应,在全区呈现有规律的分布,从图1-18中看出:除在下二门、安棚、双河及王集四个已知油田上出现较强的水化学效应外,在其他12个地区存在着与已知油田类似的浅层效应,说明本区有良好的油气勘探开发潜力。其中北部斜坡带,浅层水化学效应比较集中。该带是继承性的沉积构造复合带。古近系各组段地层在斜坡带均有沉积,地层从凹陷内向外部边缘(斜坡)逐渐收敛减薄,但无明显的超覆现象,说明该斜坡是一个边沉积边抬起的继承性斜坡。后期构造运动使该斜坡进一步抬升,成为油气运移的指向。砂体发育给油气藏的形成提供了良好的储集条件。断裂发育形成了较多的鼻状构造,它们控制着油气的富集。古近纪末期形成的区域不整合面及新近纪广泛发育的泥岩是良好的盖层,并为油气保存提供了良好的地质条件。众多浅层水化学效应的出现,是上述油气地质特征的映照,说明北部斜坡是油气富集和勘探的有利地带。根据区域水文地球化学调查所提供的油气信息,并结合地震-地质成果,选择了有利的区块进行钻探,结果在4号、5号、9号、10-12号等浅层水化学效应区,均获得工业油流,相继建成了新庄、杨楼、付湾、古城及井楼等油田。

图1-18 泌阳凹陷浅层水化学效应

注:书中仅涉及一个非法定单位——当量浓度,它等于法定单位离子的摩尔浓度(mol/L)与其离子价的乘积。例如摩尔浓度为0.02mol/L的钙离子溶液,其当量浓度应为0.04克当量/L(eq/L)。在水文地质(包括油田水文地质)研究中,一般用的当量浓度单位是毫克当量/L(meq/L),它和eq/L之间的转换关系是1 eq/L=1000meq/L。水中常量组分阳离子的当量浓度之和应等于阴离子的当量浓度之和。另外,国内外油田水化学成分的许多分类,都建立在“等当量”化合的基础上,因此,当量浓度在油田水文地质中广泛应用,在短期内不可能停用,故本书仍继续使用。
在我国西部半干旱、干旱水文地质区的诸多含油气盆地的浅层水化学效应也比较发育,如柴达木盆地、准噶尔盆地;在地形切割较深、黄土覆盖厚、梁、峁、塬发育的鄂尔多斯盆地,同样出现较强的油田浅层水化学效应。浅层地下水中甲烷平均含量高达149.13μL/L,普遍含有乙烷及其以上的组分。甲烷碳同位素大部分属于石油伴生气或过成熟气的范畴,而属于近代生化成因气的只占11%左右(表1-3),说明浅层水化学效应的形成,具有深部成因的特征。

表1-3 可溶气态烃甲烷碳同位素分布 单位:‰

宁武盆地煤层气勘探效果分析及启示
答:(1)加强盆地构造条件的深入研究,落实目标区构造背景,具体战术动作上,大力开展、强化物探工作,通过低成本非地震手段,如大地电磁测深等方法,落实煤层分布、构造形态和断层,特别是断层的分布与组合关系,研究其对保存条件的影响; (2)加强水文地质研究,准确把握水文条件对煤层气富集的控制作用; (3)针对盆地内煤层渗透率低...

水文地质 边界条件
答:边界条件是渗流区边界所处的条件,用以表示水头 H(或渗流量 q)在渗流区边界上所应 满足的条件,也就是渗流区内水流与其周围环境相互制约的关系.(1) 第一类边界条件(Dirichlet 条件):如果在某一部分边界(设为 Sl 或Γ1)上,各点在每 一时刻的水头都是已知的,则这部分边界就称为第一类边界或给定...

区域地质和水文地质背景
答:五、区域水文地质概况 1.含水岩组及富水性 依据含水介质特征、储水条件、地层时代和含水层富水性,区内含水层可以划分为寒武-奥陶系灰岩岩溶含水层组、石炭系薄层灰岩岩溶含水层和第四系松散沉积物孔隙含水层组。 (1)寒武系—奥陶系灰岩岩溶含水层组 由寒武系中上统和奥陶系中统灰岩组成,总厚约900m,岩溶裂隙...

矿区地质及工作面概况
答:可采及局部可采煤层共7层,为5、7、8、9、11、12-1、12-2煤,总厚度平均20.90m。目前,该矿区12水平以上煤层大部分已采空,大埋深且地质条件复杂的西冀急倾斜区煤层成为主要的开采资源。赵各庄矿井田区,基本上为一相对独立的水文地质单元。主要的直接充水含水层包括:①5煤层顶板砂岩裂隙承压含水...

水文地质基本知识
答:有一定的补给水量不仅是形成含水层的一个重要条件,更重要的是关系到含水层水量的多少及其保证程度的一个主要因素。 2.水文地质单元 由水文地质要素(补给区、排泄区、含水层、隔水层等)组一个统一而完整的水文地质结构(单位),称为水文地质单元。一个水文地质单元可包括若干个蓄水构造,或者只有一个蓄水构造。研究...

矿井水文地质条件有哪几种类型?
答:把矿井水文地质划分为简单、中等、复杂、极复杂四种类型(见表)。注:1.单位涌水量以井田主要充水含水层中有代表性的为准。2.在单位涌水量q,矿井涌水量Q1、Q2和矿井突水量Q3中,以最大值作为分类依据。3.同一井田煤层较多,且水文地质条件变化较大时,应分煤层进行矿井水文地质类型划分。

水文地质条件的影响
答:2016-06-10 水文地质条件的发展过程 2018-01-24 水文条件与水文地质条件的区别? 2017-01-09 建筑结构设计:水文地质条件对建筑的影响有哪些 2012-06-10 水文地质条件是什么 9 2020-01-19 地质与水文地质条件造成的储量损失为? 2016-08-02 工程地质条件和水文地质条件怎么分析 3 2012-12-18 地质条件是...

矿区水文地质物探
答:矿井开采前所进行的区域水文地质勘探的主要任务和目的如下: 1)查明和控制矿区区域水文地质条件,确定矿区所处的水文地质单元的位置,详细查明矿区发育的含水层及各个含水层的地下水补给、径流、排泄条件,区域地下水对矿区的补给关系,矿区地表水系及气象因素与地下水的相互关系及相互影响。 2)详细查明矿区含(隔)水层的...

湖南宁远油页岩预测区资源评价
答:本区为一丘陵区,主要山岭为古近系红色砂岩组成,山岭的相对高度100~300m,丘陵之间的平原地带一般宽50m,最宽900m。矿层绝大部分埋藏在侵蚀基准面以下,矿层底部埋藏有较大的含水层,又有较多的地表水在矿区流过,故矿区水文地质条件属较复杂类型。一、地质背景 (一)构造特征 本区位于紫荆山—阳明...

水文地质条件概化
答:(4)河流渗漏处理:区内河流均为季节性短暂流水,有水时间短,所以河流的入渗与降水入渗一同考虑在内。5.水文地质概念模型 经过对水文地质条件概化处理,计算区水文地质概念模型是由非均质各向同性的裂隙岩溶含水层组成的具有二类边界平面二维渗流的潜水过渡到承压水含水层。