贵州天柱县大河边重晶石矿矿床 我国重晶石矿资源

作者&投稿:鞠厚 (若有异议请与网页底部的电邮联系)

一、矿床概况

1.矿床名称

贵州天柱大河边重晶石矿床。

2.地理位置及中心点经纬度坐标

矿区位于贵州省东部天柱县与湖南省西部新晃侗族自治县的交界地带。地理坐标:东经109°08′07″,北纬27°02′19″。

3.矿床类型、矿种、资源储量、规模、品位、勘查程度、开发情况

1984~1986年,贵州省地质队对天柱县大河边重晶石矿进行了详查工作,BaSO4含量为32.06%~98.06%,平均85.56%。

4.所属Ⅲ,Ⅳ级成矿区带区域成矿条件

ⅢBa-15江南隆起西段Sn-W-Au-Sb-Fe-Mn-Cu-重晶石-滑石成矿带(III-78)。

5.区域成矿条件

(1)大地构造位置

位于上扬子古陆块雪峰山基底逆推带,扬子陆块南部被动边缘褶冲带三级构造单元之万山-兰田和锦屏-雷山长条状褶皱区。

(2)区域地层

区内出露地层主要有上元古界下江群,以及震旦系、寒武系、奥陶系及志留系,累计地层出露厚度逾7000m。寒武系约占30%出露面积,震旦系、奥陶系及志留系分布较为局限(图3-1)。

(3)区域构造

区内褶曲主要有龙塘背斜、大塘背斜、阳寨-半坡向斜、新场背斜、坪地复式向斜,岳寨-绿豆坡背斜、南明向斜、天柱向斜、高酿向斜等。区内断裂十分发育,以逆断层和正断层为主(各占50%),平移断层仅图区南缘老山坡-高酿断层一条,且其东端主要表现为正断层性质。

二、矿床地质特征

1.矿区地质特征

矿区位于坪地复式向斜南东翼中段,总的为一单斜构造,局部发育一系列北东向次级褶曲及压扭性断层,与矿区西部压扭性区域断层F1成锐角相交,构成一个“入字形”构造(图3-2)。

矿区出露地层有青白口系、南华系、震旦系、寒武系和第四系。重晶石矿产于上震旦统—下寒武统老堡组

含重晶石、硅质岩建造中。

2.矿床特征

(1)矿体特征

重晶石主矿层出露于坪地(贡溪)向斜两翼,形态简单,呈层状产出,矿体产状与围岩一致,同步褶皱,总体走向北东45°;倾向在向斜北西翼为南东,南东翼为北西;倾角16°~84°,一般为20°~40°;浅部陡,向深部则渐趋变缓。北西翼长12km,南东翼长4km。矿层厚度较稳定,主矿层厚一般3~5m,最小0.5m,最大10.17m,平均厚度3.49m,在倾斜方向,矿层厚度也略有增厚的趋势。

图3-1 大河边重晶石矿床区域地质略图

(据李文炎等,1991)

1—寒武系;2—震旦系;3—下江群;4—背斜;5—向斜;6—压性断层;7—冲断层;8—压扭性断层;9—平推断层;10—地质界线;11—不整合地质界线;12—重晶石矿层

图3-2 天柱县大河边重晶石矿区构造纲要图

(据贵州省地调院,2012)

1—坪能向斜;2—崩龙山背斜;3—哨坝向斜;4—无名小背斜;5—冲坑向斜;6—黄莲向斜;7—卜登寨背斜;8—高架背斜

(2)矿石特征

矿物组成 矿石矿物主要为浅灰—灰色重晶石,伴有白云石、方解石、炭质有机质,少量自生斜长石、粘土矿物、黄铁矿等,其含量随矿石类型而异。

矿石结构 重晶石矿石多为他形-半自形晶,主要结构有粉晶-细晶结构、不等粒变晶结构、花岗变晶结构,次要结构有向心放射状不等粒变晶结构、交代溶蚀结构、条柱状结构等。

矿石构造 块状、花斑状、溶孔状、条纹状和结核状等,多见块状、花斑状、条纹状三种构造。

矿石类型 依据矿石的结构、构造可将矿石分成块状矿石和条带状矿石、花斑状矿石、溶孔状矿石、结核状矿石等矿石类型,每种自然类型矿石的矿物共生组合和含量不一样。

矿石化学成分 有用组分含量:BaSO4含量为32.06%~98.06%,平均85.56%,有用组分含量从北往南有逐渐增高之趋势,据重晶石层光谱全分析样品成果资料显示(表3-1),本区重晶石伴生元素中Sr,B,Y,Yb含量偏高,而作为填料用重晶石的有害杂质Mn,Cu,Pb含量很低;有害组分含量:SiO2,Al2O3,Fe2O3,深部含量分别为1.01%,0.38%,0.35%,地表含量分别为1.49%,0.89%,0.76%,深部比地表低;而CaO,MgO地表含量分别为0.05%,0.09%,深部含量分别为0.88%,0.47%,地表比深部低。矿石中所含各项杂质指标较低,均符合规范要求,矿石质量优良。

表3-1 大河边矿区矿层光谱全分析结果表 单位:ppm

注:ppm为parts per million的缩写,1ppm=1×10-6

3.矿床地球化学特征

稀土元素特征:重晶石岩类中稀土元素的总量低,∑REE含量范围在(53.6~14.9)×10-6之间,含Y为(25.5~3.06)×10-6,轻稀土元素略有富集,用北美页岩的稀土元素值(Haskin et al.,1984)标准化后,具有明显的负Ce异常(图3-3),与东太平洋隆起的现代热水沉积物的模式一致(Michard,1983),表明本区重晶石岩类具有热水沉积特征。从图3-5看,条带状灰黑色磷灰石重晶石岩(Ba-2)具有中稀土元素富集的特点。条带状灰黑色磷灰石重晶石岩(矿层下部,Ba2)稀土元素的总量高,∑REE可达551×10-6,Y可达353×10-5,∑REE及Y含量明显高于不含磷灰石的重晶石岩,主要是由于条带状灰黑色磷灰石重晶石岩含有较多磷灰石及磷钇矿(P2O5达9.33%),因REE可取代磷灰石及磷钇矿可能为稀土元素和Y的载体矿物,因而引起∑REE及Y含量明显增高,这与在区域上U和REE主要富集于磷块岩和富含磷质的Ni-V-Mo矿层的规律一致(张爱云等,1987)。

三、矿床成因与成矿模式

1.成矿物质来源

成矿物质来源对成矿起着特别重要的控制作用,它决定着矿床类型、矿石质量和矿床规模。对于贡溪重晶石矿床,据地质特征、地球化学特征可知是典型的沉积矿床,成矿物质主要是由火山-热水溶液提供。

(1)陆源

Ba在海水中的平均含量仅20×10-9,但Ba极易被粘土矿物和硅胶吸附并被搬运,故在粘土和页岩中Ba含量可达800×10-6,富有机质的黑色页岩比一般页岩更富含Ba。含矿系内的黑色页岩和硅质岩提供了Ba的部分来源,但这只能是极少的部分,因为含矿系黑色页岩总厚度不超过0.6m,它所携带的Ba十分有限。

(2)海底火山喷发源

在矿层底部发现一层硅质凝灰岩,其Ba含量平均达17267×10-6,为一般页岩(8130×10-6)的21.6倍,这表明重晶石成矿前该区有海底火山活动,火山喷发亦带来了部分Ba,但这也不是主要来源,因为硅质火山岩最大厚度不到1m,而重晶石矿层最大厚度达7.0m,它不可能提供沉积如此之多的Ba。

图3-3 大河边-贡溪超大型重晶石矿床岩石中稀土元素标准化曲线图

(据方维萱等修改,2002)

(3)海底热卤水源

海底热卤水源是矿区Ba元素的最主要来源。矿区基底为巨厚的震旦系冰碛含砾砂板岩和江口组长石石英砂岩及板溪群板岩,它们都具Ba的高丰度值,平均含量达8848×10-6,高出地壳丰度值(1500×10-6)的17.70 倍(胡清洁,1997)。由下渗海水、地表水、地下水混合形成的原生水、间隙水被加温后,淋滤溶取上述岩层中的Ba,形成富含Ba的热卤水,再沿同生断裂上升,在海盆内与海水混合形成Ba2SO4,沉积成矿。Ba在热卤水中的存在形式可能为BaCl2的配合物,因BaCl2具有较高的溶解度,易被搬运。由均一法测温数据得知,重晶石形成时热卤水的最高温度在2130°左右。

2.成矿物理化学条件

该矿床成矿温度为100~200℃,成矿压力为数帕至20×105Pa,成矿的Eh值为357mV,pH值为6.5,为弱酸性-弱碱性过渡的氧化环境中生成。

3.矿床沉积成矿作用

1)在新元古代早期,Rodinia超大陆发生裂解,地壳和岩石圈在引张力作用下发生裂陷作用,使深部含钡热水流体被动上涌。

2)在晚震旦世—早寒武世时,裂陷盆地已演化为深水盆地,随着裂陷作用的继续进行,深部含P,Ba,H2S等组分的硅酸盐热水流体沿同沉积深断裂运移喷溢于深水裂陷盆地中。

3)当硅酸盐气液热流体与海水相遇时,随物质浓度变化,依照沉积分异作用规律(除火山碎屑岩、砂质岩沉积外),最先在酸性环境中沉积了硅质岩,依次含磷硅质岩或夹磷结核层、磷块岩等相继沉积。在硅胶凝聚成硅质岩之际释放Ba2+于海水中。当溶液由酸性演化至弱碱性的氧化环境时,硅质岩不再沉积,此时Ba2+与海水中的

相遇结合沉淀为重晶石矿层。由于裂陷作用的强烈程度、多期性、间歇性,含矿气液流体的喷溢也呈现出时间长短不一、多期性和间歇性。从而形成厚度不等、矿石质量不一的多层重晶石矿。

4.成矿模式

该区重晶石找矿主要有如下标志。

1)地层标志:由于该区重晶石赋存于震旦系—寒武系过渡层位老堡组中,有震旦系出露地段,就有找到重晶石层的可能,因此,地层标志为该区重晶石找矿的间接找矿标志。

2)岩性组合:由于该区重晶石岩性组合为硅质岩-重晶石-炭质页岩(自下而上)的岩性组合,岩性组合为其直接找矿标志。

3)矿层露头:矿层露头为该区重晶石找寻的直接找矿标志。

4)开采老硐:开采老硐的存在为该区直接找矿标志。

5)V,P标志:在重晶石矿层顶界向上0.14~0.16m一段黑色炭质页岩内,富含V,Ag,Mo,Ni等多金属。此段黑色页岩中普遍含有稀疏的球形磷结核,外貌特殊,易于辨认。

6)化探:在重晶石层露头出露地段,Ba异常值高。

7)重砂:在重晶石层露头出露地段,Ba异常值高。

8)地貌:由于重晶石较坚硬,不易风化,在地貌上常形成正地形或陡坎,因此,陡崖为其直接找矿标志。

综上所述,可建立大河边重晶石典型矿床成矿模式图(图3-4)。

图3-4 大河边重晶石典型矿床成矿模式图

(据冯学仕等,2004,有修改)

1—大陆地壳;2—地幔;3—陆缘斜坡相碳酸盐沉积;4—裂陷盆地相炭、硅质沉积;5—远岸泥质沉积;6—裂陷盆地核部;7—含钡热水流体;8—拉伸方向;9—同沉积断层;10—重晶石矿体



重晶石矿床地质~

一、成矿地质条件
重晶石是钡的硫酸盐,钡元素在地壳中的丰度值为390×10-6(黎彤,1976)。在岩浆作用阶段,钡的富集程度很低,在岩浆岩中,钡的平均含量为0.09%。只是在岩浆分异的晚期阶段,由于Ba2+与K+的离子半径相近,负电性相近,Ba—O与K—O键力类似,它们易于产生类质同像,因而钡在富钾造岩矿物黑云母、钾长石中含量较高。但在岩浆岩中未发现钡的独立矿物,更不能形成钡矿床。
在热液阶段,热液可从富钾造岩矿物的围岩中获取钡,岩浆期后热液中的钡可呈卤化物搬运,在热液脉中富集形成重晶石等独立钡矿物。因此,重晶石作为常见的脉石矿物,广泛见于多种金属热液矿床中。钡矿物的大量聚集,是在氧化-还原电位较高而温度不太高的环境中,形成硫酸钡和碳酸钡的工业性堆积。多数重晶石矿床属于中—低温热液矿床。成矿地质条件与多金属矿床十分相似,重晶石常常作为多金属矿石的副产品开采。热液成因的重晶石矿床,其围岩可以是酸性和碱性侵入岩、火山岩,以及其他硅酸盐岩石。矿体有交代成因的,也有充填结晶的矿脉。美国学者认为这种类型的重晶石,是含BaCl2和BaS的热液与含SO2-4的渗流水作用而形成的。重晶石矿床的围岩也可以是石灰岩,如四川酉阳一带的重晶石-萤石矿床。这是因为Ba易于被含F的气体和溶液转移,在有利场所聚集而形成重晶石矿脉。也有产于碳酸盐岩区层控铅锌矿床中共生的重晶石-萤石矿床。
在表生作用阶段,钾长石、黑云母等含钡矿物易于风化、分解,使钡能很快参加表生循环作用,呈可溶性的钡重碳酸盐或氯化物、硫酸盐形式被搬运。BaSO4的溶解度很低,但当水体中有K、Mg等电解质存在时,可大大提高溶解度。含有BaSO4的水体被蒸发,或者受到石灰岩的中和作用,尤其是在水体中SO2-4浓度增加时,可促使BaSO4发生沉淀。因此沉积重晶石,常赋存在沿岸带的碎屑及泥质物或硅质沉积物中。近年来,在国内外发现了不少大型沉积成因的重晶石矿床。例如,在一些地区的暗色硅质岩层中,常有巨大的、有臭味的黑色重晶石矿层。有时因其与暗色的不纯灰岩相似而被忽视。因此,在富含硫酸盐的古代和现代湖泊、沼泽及海盆地区,都有可能找到沉积型重晶石矿床。
深海粘土中也可富集重晶石。深循环的加热海水,可以从下伏洋壳淋滤金属和钡,以氯化物形式搬运,在含矿质的热海水对流系统相对较差的环境中发生沉淀。
在意大利Rome省的第四纪碱性火山岩区火山中心间的大盆地中,发育有来自火山岩的河湖沉积。其中,重晶石、方解石及很细粒的萤石,在某些层位的含量可高达60%。
对不同成因的重晶石矿床研究表明,重晶石矿床的成矿温度区间一般介于73~273℃,成矿压力为(100~200)×105Pa,氧化-还原电位较高,pH为弱酸性—中性(表10-3)。
表10-3 重晶石(全岩样)Eh、pH测定值


(据李文炎等,1991)
二、矿床主要成因类型及地质特征
重晶石作为常见的脉石矿物,广泛见于多种金属热液矿床中。钡矿物的大量聚集,是在氧化-还原电位较高而温度不太高的环境中,形成硫酸钡和碳酸钡的堆积。多数重晶石矿床属于中—低温热液矿床。在表生作用阶段,含有BaSO4的水体被蒸发,或者受到石灰岩的中和作用,可促使BaSO4发生沉淀,形成沉积型的重晶石矿床。目前已知重晶石矿床的成因有三种类型,即热液型矿床、沉积型矿床和残积型矿床,均具有工业意义。
1.热液型重晶石矿床
这是分布最广的矿床类型,规模大小不等。矿体多呈脉状,产于各种围岩中,但多数大型矿床均产于硅酸岩中,矿体成群成带出现,其形态受断裂控制,呈简单的单脉、复杂的复脉和透镜体,有分支复合、尖灭再现现象;长数十米到2000余米,延深数十米到数百米,厚度一般数米。围岩蚀变不强烈,或者不明显,常见者有高岭石化(多见于火山岩系内)和硅化(多见于石灰岩内)。矿脉产状受断裂构造控制,有时也产于层理裂隙及各种洞穴构造中。主要矿物为灰—白色重晶石、萤石、石英。有时金属硫化物含量很高,重晶石反被当做副产品开采。矿石一般呈致密块状,有时在晶洞中有板状重晶石晶簇。在矿床风化带中,可见到白色、半透明—透明的钟乳状、纤维状或致密状的次生重晶石集合体。矿石中矿物组分较简单,有五种组合形式:重晶石单矿物组成、石英-重晶石组合、萤石-重晶石组合、多金属硫化物-重晶石组合、毒重石-斜钡钙石-重晶石组合。常有类质同像的锶元素存在,有时有铅、锌、铜、黄铁矿、萤石、毒重石等矿产共(伴)生。矿床规模一般是中、小型,也有较大工业价值的重晶石矿床,如广西象州潘村重晶石矿床、山东郯城房庄重晶石矿床。
这类矿床是含矿的中低温热液在有利的构造裂隙中充填结晶而成。一般以低温热液矿床的矿石质量较好。矿床多分布在构造-岩浆活动带的外带,主要受断裂构造控制。在热液型多金属成矿区,应注意作为共生矿种的重晶石的综合评价。
矿床实例:广西象州重晶石矿田
矿田位于广西象州东北约35km处,包括潘村、寺村、龙保、普和等几个大型重晶石矿床。象州矿田含矿岩系为泥盆系,以角度不整合覆于寒武系水口群浅变质碎屑岩系之上。泥盆系下统下部为红色砂砾岩,上部那高岭组、四排组、郁江组为海相细碎屑岩与台地碳酸盐岩。中统应堂组、东岗岭组为台地碳酸盐岩与碎屑岩互层。上统是南丹型盆地相榴江组,为硅质岩、条带状灰层。泥盆系厚度为2500m左右。象州大乐之东区域性的雷山-通挽断裂控制了区域岩相的分界。断裂之东上泥盆统为台地相,断裂之西上泥盆统为盆地相,与象州西部来宾洪江的上泥盆统组成统一的断陷盆地。矿脉较集中产于下泥盆统上部的四排组和郁江组中,岩性主要为灰岩、泥灰岩夹泥岩和泥岩夹灰岩。矿田中大部分矿床属脉型重晶石矿床,亦形成有堆积型重晶石矿床。
潘村矿区内矿体受北西向和南北向两组断裂控制,北西向断裂走向313°~355°,倾向北东,倾角52°~85°;南北向断裂走向350°~360°,倾向东,倾角70°~80°(图10-1)。
区内重晶石脉80余条,矿脉产状与断层产状基本一致。重晶石脉出露长30~1700m,厚1~10m,延深50~60m。矿脉围岩为灰岩、泥岩及泥质灰岩等。围岩蚀变有硅化、重晶石化、方解石化和角砾岩化等。重晶石化与硅化关系密切。重晶石与石英、方解石共生。矿脉厚度地表较大,向深部有变小的趋势;重晶石品位地表较富,BaSO4平均83.58%,向深部趋贫,BaSO4平均64.12%。
重晶石富矿石多为重晶石单矿物类型矿石,柱板状结构,块状构造,晶体粗大,重晶石含量85%~95%。贫矿石多属石英-重晶石型,粒状结构,角砾状构造,重晶石含量50%~60%,此类矿石经风化堆积可相对富集,手选后可达到高品位富矿石。为中—低温热液矿床。

图10-1 广西象州县潘村重晶石矿区7线剖面图据汤继新等,1983)

2.沉积型重晶石矿床
矿体呈层状、似层状、透镜状产出;重晶石以主要矿物或胶结物形式存在于湖相或海相细碎屑岩或泥质岩中,或者赋存在砂页岩和石灰岩层之间。矿体中心部位硫酸钡含量高,边部含量低;产状和围岩一致,围岩通常为黑色页岩。重晶石与FeS2等硫化物共生,因此,矿石一般为暗色—黑色带有硫化氢臭味的重晶石细粒集合体。矿石中矿物组分简单,有四种组合形式:重晶石单矿物组成、石英-重晶石组合、方解石-石英-重晶石组合、毒重石-斜钡钙石-重晶石组合。成矿后的变质作用常使矿石重结晶,矿物粒度增大。矿床规模一般大、中型,是最有工业价值的重晶石矿床,如陕西安康石梯、湖南新晃贡溪、贵州天柱大河边、镇宁乐纪、湖北柳林、安徽东至、浙江富阳、广西三江重晶石矿床。
德国的麦根矿床赋存于砂、页岩和石灰岩之间,厚6m,矿石中共生矿物有黄铁矿及沥青质。矿床的形成是在还原条件的水盆地中进行的,这种水盆地中富含H2S(有人认为H2S来自水下喷气和热泉)。当水溶液中含有Fe和Ba时,在水盆中心沉积大量黄铁矿,有时共生闪锌矿。水盆地边部因游离氧较多,H2S被氧化成H2SO4,生成重晶石沉积物(图10-2)。

图 10-2 沉积型重晶石矿床沉积环境示意图

近年来通过对贵州天柱、玉屏及湘西新晃贡溪等重晶石矿床的研究,发现含矿岩系中包含有大量类似现代太平洋海底热水生物群的藻类、海绵骨针、管状生物等化石组合;重晶石矿石中有机质碳含量较低,具有原生残留有机质的明显特征;与同期的海相碳酸盐87Sr/86Sr比值(约为0.7090)相比较,重晶石矿床的87Sr/86Sr比值要低,集中在0.708310~0.708967之间,表明在矿床的形成过程中有来源于海底火山或海底热液活动提供的具有低87Sr/86Sr比值的锶加入。从而提出了下寒武统重晶石矿床为热水沉积的观点,并总结提出了陆坡带上与沉积作用有关的(贡溪式)重晶石矿床模式(图10-3)。

图 10-3 陆坡带上与沉积作用有关的 ( 贡溪式) 重晶石矿床模式图( 据车勤建,1995)

贡溪式重晶石矿床模式:
(1)成矿构造背景
该类型矿床主要分布在湖南新晃-贵州天柱地区。该区新元古宙处于古陆边缘并发生由西南向东北方向的海侵。雪峰运动后,该区处于相对稳定状态,发育了一套以硅质岩、白云岩、炭质页岩为主的沉积建造,并伴有相应的沉积成矿作用。
(2)产出地质环境
主要控矿构造该区受北东向大断裂控制,在早寒武世,断裂的东盘发生沉陷,西盘继续上升,形成一边缘海盆。其陆坡地带的中下部发生了重晶石成矿作用,从而使该类型矿床沿着北东向继续分布。
含矿岩系特征主要含矿岩系为下寒武统牛蹄塘组下段,为一套炭质页岩夹硅质岩、含钙质磷块岩、沉凝灰岩或凝灰质硅质岩、白云岩组合,属于陆坡-边缘海盆沉积。其Ba元素丰度值极高,是其他地层的数倍至数十倍。矿层顶底板与矿层稀土元素配分曲线和微量元素组合基本相似。
(3)矿床地质特征
矿体赋存于下寒武统牛蹄塘组下段,钙质磷块岩、沉凝灰岩之上,炭质页岩之下。矿层与地层产状一致,形态简单,产状稳定,以层状、似层状为主,局部为透镜状。一般长度为2000~3000m,最长者达20km以上,厚度一般为2~3m。矿石矿物主要为重晶石;脉石矿物主要有方解石、石英,其次有黄铁矿、胶磷矿和高岭石。微量及偶见矿物有绢云母、白云母、斜长石、磷灰石、绿泥石、黄铜矿等。矿石中有用组分有Mo,Ni,V,U,Y,Pt,Pd,Ag,Au,Sn等。矿石的结构主要有镶嵌粒状变晶结构,其次为花岗变晶结构、放射状结构。主要构造为致密块状和条纹状构造,其次为条带状、层纹状构造,还有少量的结核状、晶洞状、脉状、透镜状、片状、梳状、缝合线构造等。
(4)矿床模式描述
模式简要说明:晚震旦世留茶坡期大规模的海侵从南往北席卷湘西、黔东地区,沉积了一套以硅质岩为主的建造。早寒武世初期,海侵持续扩大,新晃、天柱地区全部沦为海盆边缘,并带来了丰富的成矿物质,在盆地边缘陆坡地带发生大规模的重晶石沉积成矿作用。尔后海盆处于半封闭状态,沉积了一套以炭质页岩为主的地层,对含矿层位起着覆盖与保护作用。
成矿时空演化及成矿主要机制:①物质来源:该区基底岩石Ba的平均含量是地壳丰度的17.7倍;重晶石矿层与底部钙质磷块岩之间有一层厚约1.0m的沉凝灰岩或凝灰质硅质岩,其Ba平均含量是海水丰度的35倍,是震旦系上统富Ba岩石的1.69~5.76倍。因而基底岩石风化溶蚀、海底火山喷发是Ba的来源之一。②重晶石矿体中富含V,Mo,Ni及Au,Pt,Pd,Ag和稀土元素,是由水下含矿(Ba)热卤水沿深大断裂或火山喷发通道源源不断提供的。③重晶石矿石δ34S值变化于33.04‰~37.98‰之间,平均为36.14‰,说明硫的来源既不是蒸发岩,也不是岩浆岩中的硫酸盐,而是与有机质、厌氧细菌、生物有关的硫,从而造成34S的异常富集。④基底沉积物在成岩过程中,大量的Ba离子从硅胶团中解脱呈游离状态进入盆地,与水下含矿(Ba)热卤水带来的Ba汇聚一起,在适当的沉积环境(气候炎热干燥,处于氧化还原界面附近)和物理化学条件(Eh值小于0,pH值近于8)下与丰富的硫酸根化合形成BaSO4,并在一定的范围内快速堆积形成矿床。
(5)控矿因素及找矿标志
主要控矿因素:斜坡相沉积的含矿岩系,古构造、古地理环境和沉积相的变化部位。
找矿主要标志:①主要矿层产于下寒武统底部,具有广泛的区域性。②矿层顶、底板岩性主要有三种类型:顶、底板均为硅质岩类;顶板为结核状重晶石板状炭质页岩,底板为钙质磷块岩;顶板为硅质岩,底板为白云岩。③在矿层周围沟谷和河流中有重晶石重砂富集。④区域地层Ba元素丰度比地壳丰度高得多。
3.残积型重晶石矿床
矿体即为含重晶石的石灰岩和白云岩的风化壳。重晶石碎块和粘土相混杂,有少量燧石、石英及碳酸盐岩碎石。矿层厚度可达数米。矿床覆盖面积及矿石的质量,受原生矿脉的分布情况及矿物组合控制。美国密苏里州的这类矿床是典型实例。
该类矿床主要产于我国南方原生重晶石矿床附近的第四纪残坡积层中。矿体形态受原生矿和地形控制,呈复杂的扁豆状、透镜状;面积数千到数十万平方米,厚度数十厘米到3m;埋深数十厘米到2m;产状与围岩不一致。矿石中以重晶石、围岩碎屑、粘土为主,石英、方解石少量。矿床规模一般是小型,偶见中型,是有一定工业价值的矿床,如广西象州寺村重晶石矿床、海南儋州冰岭重晶石矿床。
三、资源分布及成矿规律
我国重晶石资源丰富,广泛分布于22个省(自治区、直辖市)(图10-4)。其中,储量以贵州最多,占全国总量的34.2%,其次是湖南(15.2%)、广西(10.6%)、甘肃(10.3%)、陕西(10.1%)、山东(5.9%)、福建(4.4%),以上7个省(自治区)储量合计占全国总储量的90.7%。截至2004年底,全国共查明资源储量的矿床103处,查明资源储量42597.14万t,居世界第一位。

图10-4 中国重晶石资源分布示意图

根据重晶石矿床的分布特点,我国可划分为8个成矿带(见表10-4)。
表10-4 我国重晶石矿床主要成矿带


我国主要的大型、特大型矿床常以单一的重晶石型为主要的矿石类型,属层状重晶石矿床,矿石具有明显的沉积构造和结构,矿物成分和化学成分比较简单,质纯。我国还有许多伴生重晶石矿床,虽然其没有单独开采或利用的价值,但可以综合利用或顺便开采,作为生产过程的副产品。例如,酒泉钢铁公司等单位已对甘肃镜铁山铁矿石中共生的重晶石做过选矿试验,开展综合利用研究。
我国的重晶石矿床在各个地质时代都有产出,主要集中在寒武纪、泥盆纪、奥陶纪和中生代的地层中。层状重晶石矿床主要集中于寒武系,其次是泥盆系,其中以下寒武统层状矿床总规模十分巨大。层状矿床与同沉积的活动性大断裂空间关系亦很明显,说明矿床与构造关系密切。脉状矿床多产在奥陶系、泥盆系和三叠系,充填于中-小型断裂、裂隙中,明显受构造控制。层状重晶石矿床主要产于构造活动褶皱带(区)和地台区的深水盆地中。脉状重晶石矿床主要产在地质构造较稳定的碳酸盐岩地台区的碳酸盐岩台地中。
重晶石矿床的含矿岩系也各有特色,层状矿床的含矿岩石为含有机质的碎屑岩、硅质岩,并具有眼球状构造;脉状重晶石矿床的围岩常为含燧石的碳酸盐岩与沉积初期的碎屑岩,普遍有明显的硅化蚀变。层状与脉状重晶石均与SiO2有密切关系。

重晶石是我国重要的优势矿产之一,我国重晶石资源丰富,储量和产量均居世界首位,也是世界上最大的重晶石出口国,在国际市场上占有重要的地位。
一、储量、基础储量、查明资源量
截止到2011年底,全国总查明资源储量29021.05万吨,其中基础储量4194.84万吨(储量1899.58万吨),资源量24826.21万吨,储量、基础储量、资源量占总查明资源储量的相对密度分别为6.5%,14.5%,85.5%。
二、资源分布
截止到2011年底,全国共探明重晶石矿储量的矿区有220处,广泛分布于全国25个省(区)(图1-1)。重晶石矿查明资源储量以贵州省最多,占全国总量的32.1%,湖南(21.9%)、广西(10.5%)、甘肃(9.1%)、陕西(8.9%)、浙江(3.5%)等省(区)次之,以上六省(区)查明资源储量合计占全国总量的86%以上。
三、成因类型及成矿时代
重晶石矿床类型以沉积型为主(如贵州天柱、湖南贡溪、广西板必、湖北柳林重晶石矿等),占总储量的60%。此外,还有火山-沉积型(如甘肃镜铁山伴生重晶石矿)、层控内生型(湖北南庄坪)、热液型(广西象州县潘村)和残坡积型(广东水岭矿)(图1-2)。
成矿时代以古生代为主,震旦纪及中—新生代也有重晶石矿形成,主要集中在寒武纪、泥盆纪、奥陶纪和中生代的地层中。
四、规模、品位
中国重晶石矿床以大、中型为主,仅贵州天柱大河边与湖南新晃贡溪就占大中型产地储量的一半以上,而且共、伴生矿产储量多,利于综合利用。主要的大型矿床常以单一的重晶石型为主要的矿石类型,属层状重晶石矿床。
中国重晶石矿矿石质量较好,绝大部分矿区的矿石为中高品位,矿石品位小于50%的仅占15%。
五、矿体赋存特征
我国重晶石矿体以中厚度缓倾斜层状为主,脉状次之。以露天开采为主,地下开采比例不大。
六、重晶石矿石选矿利用特征
重晶石的选矿方法有手选、重选、磁选、浮选(表1-2)。

图1-1 中国重晶石矿矿产地分布图


图1-2 中国不同类型重晶石矿床所占比例


表1-2 重晶石的选矿方法表

总体来看,中国重晶石矿产有几个明显的特点,其一,中国重晶石矿主要分布在中部地区,约占70%;其二,几乎所有富矿主要集中在贵州、湖南、广西,矿床以大、中型为主,仅贵州天柱大河边与湖南新晃贡溪两矿产地就占大中型产地储量的一半以上;其三,共、伴生重晶石矿床较多,虽然许多没有单独开采的价值,但利于综合利用或顺便开采,作为生产过程的副产品。

贵州资源条件?
答:我国1/3的重晶石集中于贵州,30多个县(市)有产出,主要分布在黔东南地区,其次在西部镇宁等地也有较多产出,保有储量1.23亿吨,天柱大河边储量达1.08亿吨,成为全国最大的矿区;贵州是沉积岩的“王国”,水泥用灰岩及其配料资源丰富,分布广泛,遍及省内各地,水泥灰岩保有储量15.49亿吨,水泥配料用砂岩、粘土、页岩储量分列...

重晶石矿的简介
答:第三位,我国重晶石不但储量大,而且品位高,BaSO4>92.8%。富矿储量占全国富矿总量的99.4%,大中型矿储量占全国总量88.4%,截止95年底,我国已探明重晶石资源储量4.6亿吨。工业指标边界品位:硫酸钡(BaSO4)30%工业品位:硫酸钡(BaSO4)50%可采厚度:原生矿床0.25米,风化粘土质矿床1米。

重晶石矿采矿成本
答:/80吨=(300+500+75)/80=875/80=10.9375元/每吨。我国湖南、广西、青海、江西所产的重晶石矿床多是巨大的热液单矿物矿脉。重晶石亦可产于沉积岩中,呈结核状出现,多存在于沉积锰矿床和浅海的泥质、砂质沉积岩中。在风化残余矿床的残积粘土覆盖层内,常成结状、块状。

重晶石矿有什么用途
答:产于低温热液矿脉中,如石英-重晶石脉,萤石-重晶石脉等,常与方铅矿、闪锌矿、黄铜矿、辰砂等共生。我国湖南、广西、青海、江西所产的重晶石矿床多是巨大的热液单矿物矿脉。重晶石亦可产于沉积岩中,呈结核状出现,多存在于沉积锰矿床和浅海的泥质、砂质沉积岩中。在风化残余矿床的残积粘土覆盖层...

矿产预测类型
答:矿石自然类型以块状、条带状、结核状为主。 (2)预测区域 大河边地区-湖南贡溪。 (3)主要预测要素 成矿时代+沉积建造+岩相古地理。 3.湘黔式沉积型重晶石矿 (1)简述 重晶石矿床均产于下寒武统底部黑色含磷炭质泥质和硅质岩组合岩系之中,呈层状、似层状、透镜状单层或多层产出。矿物成分以重晶石为主,...

矿床类型
答:该类型矿床的矿物组合比较复杂,有的呈单独的重晶石脉,有的则和石英、萤石共生,更多的则是和多种金属硫化物共生,甚至以金属硫化物为主,重晶石则成为伴生矿物。与岩浆岩关系密切,成矿热液来自岩浆。例如山东都城县房庄矿区,重晶石矿体产于沂沭大断裂带两侧次一级断裂中,矿体的形成与石英斑岩、...

重晶石矿的矿山开采
答:开采分露天开采与地下开采,我国重晶石矿开采中乡镇企业土法开采占绝大多数,以露天开采为主,主要开采残坡积矿床,及矿体露头和浅部。如湖南衡南县谭子山重晶石矿,是1958年投产的国营老企业,原有四个采矿工区,一个露采,三个地下开采(斜井、平硐),80年代一个地下矿采完闭坑,另一个地下矿由于...

世界重晶石矿资源
答:印度重晶石资源较为丰富,居世界第二位。印度重晶石矿以火山热液型为主。主要产地为安德拉邦古德柏县的曼加帕特(Manganpet)矿床,该矿床重晶石多为层控矿体,基础储量约7000万吨。美国重晶石资源储量居世界第三位,查明资源约为1.54亿吨,推测资源储量还有1.54亿吨。内华达州的重晶石以层状和脉状...

贵州施秉县顶罐坡重晶石矿床
答:矿区位于施秉城南西直距2km处,隶属施秉县,交通方便;地理坐标为东经108°06′00″,北纬27°01′01″。 3.矿床类型、矿种、资源储量、规模、品位、勘查程度、开发情况 该矿床属层控(内生)型重晶石矿床,经初勘,揭露出重晶石矿脉17条,地表出露宽度0.2~20余米,单个矿脉长由30~280m不等;硫酸钡含量90%以上,...

广西象州县潘村重晶石矿床
答:广西象州县潘村重晶石矿床。 2.地理位置及中心点经纬度坐标 矿床位于广西象州县,距罗秀公社9km,有简易公路相通,属罗秀公社管辖;地理坐标为109°54′50″,24°06′30″。 图5-2 湖南谭子山重晶石矿成矿模式图 1—砂砾岩;2—花岗岩;3—白垩系;4—泥盆系;5—硅化、重晶石化蚀变带;6—断层;7—重晶...