常见的数学公理体系有哪几个?它们的主要特点是什么? 数学思想与方法 什么是公理方法和公理体系

作者&投稿:彭单 (若有异议请与网页底部的电邮联系)
数 学 公 理体系
  十九世纪末到二十世纪初,数学已发展成为一门庞大的学科,经典的数学部门已经建立起完整的体系:数论、代数学、几何学、数学分析。数学家开始探访一些基础的问题,例如什么是数?什么是曲线?什么是积分?什么是函数?……另外,怎样处理这些概念和体系也是问题。
  经典的方法一共有两类。一类是老的公理化的方法,不过非欧几何学的发展,各种几何学的发展暴露出它的许多毛病;另一类是构造方法或生成方法,这个办法往往有局限性,许多问题的解决不能靠构造。尤其是涉及无穷的许多问题往往靠逻辑、靠反证法、甚至靠直观。但是,哪些靠得住,哪些靠不住,不加分析也是无法断定的。
  对于基础概念的分析研究产生了一系列新领域—抽象代数学、拓扑学、泛函分析、测度论、积分论。而在方法上的完善,则是新公理化方法的建立,这是希尔伯特在1899年首先在《几何学基础》中做出的。

初等几何学的公理化

  十九世纪八十年代,非欧几何学得到了普遍承认之后,开始了对于几何学基础的探讨。当时已经非常清楚,欧几里得体系的毛病很多:首先,欧几里得几何学原始定义中的点、线、面等不是定义;其次,欧几里得几何学运用许多直观的概念,如“介于……之间”等没有严格的定义;另外,对于公理系统的独立性、无矛盾性、完备性没有证明。
  在十九世纪八十年代,德国数学家巴士提出一套公理系统,提出次序公理等重要概念,不过他的体系中有的公理不必要,有些必要的公理又没有,因此他公理系统不够完美。而且他也没有系统的公理化思想,他的目的是在其他方面——想通过理想元素的引进,把度量几何包括在射影几何之中。
  十九世纪八十年代末期起,皮亚诺和他的学生们也进行了一系列的研究。皮亚诺的公理系统有局限性;他的学生皮埃利的“作为演绎系统的几何学”(1899),由于基本概念太少(只有“点”和“运动”)而把必要的定义和公理弄得极为复杂,以致整个系统的逻辑关系极为混乱。
  希尔伯特的《几何学基础》的出版,标志着数学公理化新时期的到来。希尔伯特的公理系统是其后一切公理化的楷模。希尔伯特的公理化思想极深刻地影响其后数学基础的发展,他这部著作重版多次,已经成为一本广为流传的经典文献了。
  希尔伯特的公理系统与欧几里得及其后任何公理系统的不同之处,在于他没有原始的定义,定义通过公理反映出来。这种思想他在1891年就有所透露。他说:“我们可以用桌子、椅子、啤酒杯来代替点、线、面”。当然,他的意思不是说几何学研究桌、椅、啤酒怀,而是在几何学中,点、线、面的直观意义要抛掉,应该研究的只是它们之间的关系,关系由公理来体现。几何学是对空间进行逻辑分析,而不诉诸直观。
  希尔伯特的公理系统包括二十条公理,他把它们分为五组:第一组八个公理,为关联公理(从属公理);第二组四个公理,为次序公理;第三组五个公理;第四组是平行公理;第五组二个,为连续公理。
  希尔伯特在建立公理系统之后,首要任务是证明公理系统的无矛盾性。这个要求很自然,否则如果从这个公理系统中推出相互矛盾的结果来,那么这个公理系统就会毫无价值。希尔伯特在《几何学基础》第二章中证明了他的公理系统的无矛盾性。这次,他不能象非欧几何那样提出欧氏模型,他提出的是算术模型。
  实际上,由解析几何可以把点解释为三数组(可以理解为坐标(x、y、z)),直线表示为方程,这样的模型不难证明是满足所有20个公理的。因此,公理的推论若出现矛盾,则必定在实数域的算术中表现出来。这就把几何学公理的无矛盾性变成实数算术的无矛盾性。
  其次,希尔伯特考虑了公理系统的独立性,也就是说公理没有多余的。一个公理如果由其他公理不能推出它来,它对其他公理是独立的。假如把它从公理系统中删除,那么有些结论就要受到影响。希尔伯特证明独立性的方法是建造模型,使其中除了要证明的公理(比如说平行公理)之外其余的公理均成立,而且该公理的否定也成立。
  由于这些公理的独立性和无矛盾性,因此可以增减公理或使其中公理变为否定,并由此得出新的几何学。比如平行公理换成其否定就得到非欧几何学;阿基米德公理(大意是一个短线段经过有限次重复之后,总可以超出任意长的线段)换成非阿基米德的公理就得到非阿基米德几何学。希尔伯特在书中详尽地讨论了非阿基米德几何学的种种性质。
  希尔伯特对初等几何公理的无矛盾性是相对于实数的无矛盾性,因此自然要进一步考虑实数系的公理化及其无矛盾性,于是首当其冲的问题是算术的公理化。

算术的公理化

   数学,顾名思义是一门研究数的科学。自然数和它的计算——算术是数学最明显的出发点。历史上不少人认为,所有经典数学都可以从自然数推导出来。可是,一直到十九世纪末,却很少有人解释过什么是数?什么是0?什么是1?这些概念被认为是最基本的概念,它们是不是还能进一步分析,这是一些数学家关心的问题。因为一旦算术有一个基础,其他数学部门也就可以安安稳稳建立在算术的基础上。
  什么东西可以做为算术的基础呢?在历史上有三种办法:康托尔的基数序数理论,他把自然数建立在集合论的基础上,并把自然数向无穷推广;弗雷格和罗素把数完全通过逻辑词汇来定义,把算术建立在纯逻辑的基础上;用公理化的方法通过数本身的性质来定义,其中最有名的是皮亚诺公理。
  在皮亚诺之前,有戴德金的公理化定义。他的方法是准备向有理数、实数方面推广,为数学分析奠定基础。他们也都注意到逻辑是基础,但都有非逻辑公理。
  1888年,戴德金发表《什么是数,什么是数的目的?》一文,阐述他的数学观点。他把算术(代数、分析)看成逻辑的一部分,数的概念完全不依赖人对空间、时间的表象或直觉。他说“数是人类心灵的自由创造,它们做为一个工具,能使得许许多多事物能更容易、更精确地板掌握”。而创造的方法正是通过逻辑。他的定义是纯逻辑概念——类(System),类的并与交,类之间的映射,相似映射(不同元素映到不同元素)等等。通过公理定义,戴德金证明数学归纳法。但是他没有能够直接从纯逻辑名词来定义数。
  1889年,皮亚诺发表他的《算术原理:新的论述方法》,其中明显地做了两件事:第一,把算术明显地建立在几条公理之上;第二,公理都用新的符号来表达。后来皮亚诺刻划数列也同弗雷格一样是从0开始,但是他对数的概念也同戴德金一样,是考虑序数。
  皮亚诺的兴趣主要在于清楚地表述了数学结果,他编制的数理逻辑符号(1894年发表于《数学论集》)也主要是如此,而不是为了哲学分析。1900年罗素从皮亚诺学习这套符号之后,才对逻辑、哲学同时也对数学产生了巨大冲击。
  从1894年到1908年,皮亚诺接连五次出版了《数学论集》的续集,每一次都把他提出的五个公理(只是用0代1)作为算术的基础。但是皮亚诺除了逻辑符号之外,还有其他三个基本符号,即:数、零、后继。因此,他还不象弗雷格及罗素那样把数完全建立在逻辑基础上。
  他的公理系统也是有毛病的,特别是第五公理涉及所有性质,因此须要对性质或集合有所证明。有人把它改为可数条公理的序列,这样一来,由公理系所定义的就不单纯是自然数了。斯科兰姆在1934年证明,存在皮亚诺公理系统购非标准模型,这样就破坏了公理系统的范畴性。

其他数学对象的公理化

  在十九世纪末到二十世纪初的公理化浪潮中,一系列数学对象进行了公理化,这些公理化一般在数学中进行。例如由于解代数方程而引进的域及群的概念,在当时都是十分具体的,如置换群。只有到十九世纪后半叶,才逐步有了抽象群的概念并用公理刻划它。群的公理由四条组成,即封闭性公理、两个元素相加(或相乘)仍对应唯一的元素、运算满足结合律、有零元素及逆元素存在。
  群在数学中是无处不在的,但是抽象群的研究一直到十九世纪末才开始。当然,它与数理逻辑有密切的关系。有理数集体、实数集体、复数集体构成抽象域的具体模型,域的公理很多。另外,环、偏序集合、全序集合、格、布尔代数,都已经公理化。
  另一大类结构是拓扑结构,拓扑空间在1914年到1922年也得到公理化,泛函分析中的希尔伯特空间,巴拿赫空间也在二十年代完成公理化,成为二十世纪抽象数学研究的出发点。在模型论中,这些数学结构成为逻辑语句构成理论的模型

简介
数学上,一个公理系统(或称公理化系统,公理体系,公理化体系)是一个公理的集合,从中一些或全部公理可以用来一起逻辑的导出定理。一个数学理论由一个公理系统和所有它导出的定理组成。一个完整描述出来的公理系统是形式系统的一个特例;但是通常完全形式化的努力带来在确定性上递减的收益,并让人更加无法阅读。所以,公理系统的讨论通常只是半形式化的。一个形式化理论通常表示一个公理系统,例如在模型论中表述的那样。一个形式化证明是一个证明在形式化系统中的表述。[1]

性质
一个公理系统称为自洽(或称相容、一致性),如果它没有矛盾,也就是说没有从公理同时导出一个命题及其否定的能力。
在一个公理系统中,一个公理被称为独立的,若它不是一个从系统的其它公理可以导出的定理。一个系统称为独立的,若它的每个公理都是独立的。
虽然独立性不是一个系统的必要需求,自洽性却是必要的。一个公理系统称为完备的,若每个命题都可以导出或其否定可以导出。

模型
公理系统的数学模型是一个定义严谨的集合,它给系统中出现的未定义术语赋予意义,并且是用一种和系统中所定义的关系一致的方式。具体模型[2] 的存在性能证明系统的自洽。
模型也可以用来显示一个公理在系统中的独立性。通过构造除去一个特定公理的子系统的正确模型,我们表明该省去的公理是独立的,若它的正确性不可以从子系统得出。
两个模型被称为同构,如果它们的元素可以建立一一对应,并且以一种保持它们之间的关系的方式。一个其每个模型都同构于另一个的公理系统称为范畴式的,而可范畴化的性质保证了系统的完备性。
第一个公理系统是欧氏几何。

公理化方法
公理化方法经常被作为一个单一的方法或着一致的过程来讨论。以欧几里得为榜样,它确实在很多世纪中被这样对待:直到19世纪初叶,在欧洲数学和哲学中古希腊数学的遗产代表了智力成就(在几何学家的风格中,更几何的发展)的最高标准这件事被视为理所当然(例如在斯宾诺莎的著作中所述)。
这个传统的方法中,公理被设定为不言自明的,所以无可争辩,这在19世纪逐渐被扫除,这是随着非欧几何的发展,实分析的基础,康托的集合论和弗雷格在数学基础方面的工作,以及希尔伯特的公理方法作为研究工具的“新”用途而发生的。例如,群论在该世纪末第一个放到了公理化的基础上。一旦公理理清了(例如,逆元必须存在),该课题可以自主的进展,无须参考这类研究的起源—变换群。
所以,现在在数学以及它所影响的领域中至少有3种“模式”的公理化方法。用讽刺描述法,可能的态度有:
1. 接受我的公理,你就必须承担它们的后果。
2.我拒绝你的公理之一并且采纳另外的模型(I reject one of your axioms and accept extra models)。
3. 我的公理集定义了一个研究领域。
第一种情况定义了经典的演绎方法。第二种采用了博学点,一般化这个口号;它和概念可以和应该用某种内在的自然的广泛性来表达的假设是一致的。第三种在20世纪数学中有显著的位置,特别是在基于同调代数的课题中。很显然公理化方法在数学之外是有局限性的。例如,在政治哲学中,导致不可接受的结论的公理很可能被大量拒绝;所以没有人真的统一上面的第一个版本。

例子

欧几里得公理
任意两个点可以通过一条直线连接。
任意线段能无限延伸成一条直线。
给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。
所有直角都全等。
若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角,则这两条直线在这一边必定相交。
利用这些公理可以得到欧几里得几何学。修改第五条公理可以得到非欧几何学。

皮亚诺公理
1.0是自然数;
2.每一个确定的自然数a,都有一个确定的后继数a' ,a' 也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,0的后继数是1,1的后继数是2等等);
3.0不是任何自然数的后继数;
4.如果b、c的后继数都是自然数a,那么b=c;
5.任意关于自然数的命题,如果证明了它对自然数0是对的,又假定它对自然数n为真时,可以证明它对n' 也真,那么,命题对所有自然数都真。(这条公理也叫归纳公理,保证了数学归纳法的正确性)
根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。

柯尔莫果洛夫公理
假设我们有一个基础集\Omega,其子集\mathfrak{F}为西格马代数,和一个给\mathfrak{F}的要素指定一个实数的函数P。\mathfrak{F}的要素是\Omega的子集,称为“事件”。
第一公理 对于任意一个集合E\in \mathfrak{F}, 即对于任意的事件P(E)\in [0,1]。即,任一事件的概率都可以用0到1区间上的一个实数来表示。
第二公理 P(\Omega) = 1.\, 即,整体样本集合中的某个基本事件发生的概率为1。更加明确地说,在样本集合之外已经不存在基本事件了。 这在一些错误的概率计算中经常被小看;如果你不能准确地定义整个样本集合,那么任意子集的概率也不可能被定义。
第三公理 任意两两不相交事件E_1, E_2, ...的可数序列满足P(E_1 \cup E_2 \cup \cdots) = \sum P(E_i)。 即, 不相交子集的并的事件集合的概率为那些子集的概率的和。这也被称为是σ可加性。如果存在子集间的重叠,这一关系不成立。
这三条公理让概率论建立在了坚实的数学基础上。

牛顿运动定律
牛顿第一定律:任何一个物体在不受外力或受平衡力的作用时,总是保持静止状态或匀速直线运动状态,直到有作用在它上面的外力迫使它改变这种状态为止。
满足牛顿第一定律的参考系叫惯性系
牛顿第二定律:在惯性系中,物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
牛顿第三定律:两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。
利用牛顿三定律,可以建立牛顿力学。

数学上的公理有哪些?~

数学上的公理有很多,你所要问的可能指作为数学基础的东西。我不保证如果只有中学数学知识就可以看懂我写的东西,但我将大致讲讲思想,后面会给出一些知识的来源。

现代数学的大部分,其基础是数理逻辑和公理集合论。它们各自是由一组确定的公理描述的。
数理逻辑中描述了关于逻辑演算的基本规则。其中描述了如(用通俗的话说)“如果A、B两句话都对,那么A就对”等等的一组公理。
公理集合论通常指由著名的ZFC(Zemelo-Fraenkel公理加上选择公理[Axiom of Choice])公理系统定义的集合论。其中描述了如(用通俗的话说)“两个集合的元素相同则集合相等”等等的一组公理。
用上面的公理系统,加上适当的定义和推理,就可以推演出现代数学的大部分内容。
从某种角度上看,所有数学定义都是公理,因为定义就是规定了研究对象的一些性质——而定义甚至不能指出研究对象是存在的。

一个习见的例子是欧几里得几何,也就是中学课本中的几何。可以说它是一组公理推演出来的,但也可以说是一组几何公理定义了什么是几何,定义了什么是点、线、面等几何对象。当然,中学课本用的公理系统并不完善,出于教学的需求,它增加了一些多余的公理(如关于三角形全等的公理,本来只是定理),但省略了一些中学阶段不易理解的公理(如连续性公理,要求了解实数构造)。

再举一个常有人问的例子:自然数是什么?
其实数学上严格定义自然数就是用一组公理来定义的,也就是Peano公理。它的严格表述较繁,你可以参看百度百科(那个解释其实也不是很好,将就吧)。
Peano公理,用通俗的话说,是说自然数必须有个1;然后有了1,后面就一定得有个2,而且只有一个2,以此类推;然后还要有归纳法,或者说从1开始的一个无穷序列必须构成一个集合。
这组公理并没有说明自然数存在,但我们可以把只含一个空集一个元素的集合当成1,然后把1与空集作为两元素的集合当成2,以此类推,构造出确实有这么一个自然数的集合。
在公理的基础上,我们还可以定义加法的运算,并证明它们的运算性质。(顺便说一句,你会发现很多人曾无聊地问过的“1 + 1 = 2”恰是由加法的定义直接保证的

古希腊时候的数学采用的就是公理化方法,就是你学的平面几何和立体几何,通过一些明显“正确”的公理推导出各种定理。
体现出现代数学什么特点?首先没有一个公认的说法,从什么年代或者什么事件后算现代数学(不像物理里面相对论和量子力学建立后

空间几何的公理有哪些?
答:公理一:如果一条线上的两个点在平面上则该线在平面上 公理二:如果两个平面有一个公共点则它们有一条公共直线且所有的公共点都在这条直线上 公理三:三个不共线的点确定一个平面 推论一:直线及直线外一点确定一个平面 推论二:两相交直线确定一个平面 推论三:两平行直线确定一个平面 公理四:...

数学有哪些公理?有哪些基本事实?
答:和定理不同,一个公理(除非有冗余的)不能被其他公理推导出来,否则它就不是起点本身,而是能够从起点得出的某种结果—可以干脆被归为定理了。经由可靠的论证(三段论、推理规则)由前提(原有的知识)导至结论(新的知识)的逻辑演绎方法,是由古希腊人发展出来的,并已成为了现代数学的核心原则。除了...

初中数学中有哪些数学公理?
答:17.三角形内角和定理:三角形三个内角的和等于180° 18.推论1:直角三角形的两个锐角互余 19.推论2:三角形的一个外角等于和它不相邻的两个内角的和 20.推论3:三角形的一个外角大于任何一个和它不相邻的内角 21.全等三角形的对应边、对应角相等 22.边角边公理(SAS):有两边和它们的夹角对应...

初中数学几何的公理有那些?
答:22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应...

什么是几何公理,试例举中学几何的几个公理
答:几何公理的含义:几何学术语,指几何学中不加证明而取作证明根据的命题。中学几何列举如下:(1)过两点有且只有一条直线。(2)两点之间,线段最短。(3)垂线段最短。(4)过一点有且只有一条直线与已知直线垂直。(5)过直线外一点有且只有一条直线与已知直线平行.(平行公理)。(6)同位角相等,...

数学中的公理有哪些
答:b=c,那么a=c。在数学中,公理这一词被用于两种相关但相异的意思之下——逻辑公理和非逻辑公理。在这两种意义之下,公理都是用来推导其他命题的起点。和定理不同,一个公理(除非有冗余的)不能被其他公理推导出来,否则它就不是起点本身,而是能够从起点得出的某种结果—可以干脆被归为定理了。

数学立体几何四个公理
答:公理1 如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。(1)判定直线在平面内的依据 (2)判定点在平面内的方法 公理2 如果两个不重合的平面有一个公共点,那么它们有且仅有一条经过该点的公共直线 。(1)判定两个平面相交的依据 (2)判定若干个点在两个相交平面...

什么叫皮亚诺公理?
答:皮亚诺公理是意大利数学家皮亚诺在 1889 年发表的.虽然描述这套公理体系的数学语言发生过不少变化,但这套体系本身一直延用至今.根据这个建立在公理基础之上的自然数体系,通过引入减法可以得到整数系,再引入除法得到有理数体系.随后,通过计算有理数序列的极限(由数学家康托提出)或者对有理数系进行分割(由戴德金提出)...

数学高手请进~!!!
答:此外,黎曼几何在数学中也是一个重要的工具。它不仅是微分几何的基础,也应用在微分方程、变分法和复变函数论等方面。 三种几何的关系 欧氏几何、罗氏几何、黎曼几何是三种各有区别的几何。这三中几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和独立性。因此这三种几何都是正确的。 在...

数学八大公理是什么?
答:b=c,那么a=c。在数学中,公理这一词被用于两种相关但相异的意思之下——逻辑公理和非逻辑公理。在这两种意义之下,公理都是用来推导其他命题的起点。和定理不同,一个公理(除非有冗余的)不能被其他公理推导出来,否则它就不是起点本身,而是能够从起点得出的某种结果—可以干脆被归为定理了。