求一元三次方程公式一般形式 一元三次方程的一般形式的一般解法是什么?

作者&投稿:荀削 (若有异议请与网页底部的电邮联系)
标准答案来了
x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)

详细的看这里
一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。我归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)

关于记忆办法,还可以看这里
http://www.mathfan.com/H6.aspx?F=/CMS/Search/View.P6&ID=10505&T=BBS_

一元四次看这里,是图片的
http://hi.baidu.com/xiaozhaotaitai/album/item/c980801fd745da73f724e440.html

这些是具体的方法
http://blog.readnovel.com/article/htm/tid_795222.html
http://ks.cn.yahoo.com/question/1508012604025.html

方程两边同时除以最高次项的系数可得 x^4+bx^3+cx^2+dx+e=0 (1) 移项可得 x^4+bx^3=-cx^2-dx-e (2) 两边同时加上(1/2bx)^2 ,可将(2)式左边配成完全平方,方程成为 (x^2+1/2bx)^2=(1/4b^2-c)x^2-dx-e (3) 在(3)式两边同时加上(x^2+1/2bx)y+1/4y^2 可得 [(x^2+1/2bx)+1/2y]^2= (1/4b^2-c+y)x^2+(1/2by-d)x+1/4y^2=e (4) (4)式中的y是一个参数。当(4)式中的x为原方程的根时,不论y取什么值,(4)式都应成立。特别,如果所取的y值使(4)式右边关于x的二次三项式也能变成一个完全平方式,则对(4)对两边同时开方可以得到次数较低的方程。 为了使(4)式右边关于x的二次三项式也能变成一个完全平方式,只需使它的判别式变成0,即 (1/2by-d)^2-4(1/4b^2-c+d)(1/4y^2-e)=0 (5) 这是关于y的一元三次方程,可以通过塔塔利亚公式来求出y应取的实数值。 把由(5)式求出的y值代入(4)式后,(4)式的两边都成为完全平方,两边开方,可以得到两个关于x的一元二次方程。解这两个一元二次方程,就可以得出原方程的四个根。 费拉里发现的上述解法的创造性及巧妙之处在于:第一次配方得到(3)式后引进参数y,并再次配方把(3)式的左边配成含有参数y的完全平方,即得到(4)式,再利用(5)式使(4)的右边也成为完全平方,从而把一个一元四次方程的求解问题化成了一个一元三次方程及两个一元二次方程的求解问题。 不幸的是,就象塔塔利亚发现的一元三次方程求根公式被误称为卡当公式一样,费拉里发现的一元四次方程求解方法也曾被误认为是波培拉发现的。

一元三次方程的一般形式是
x3+sx2+tx+u=0
如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消
去。所以我们只要考虑形如
x3=px+q
的三次方程。

假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。
代入方程,我们就有
a3-3a2b+3ab2-b3=p(a-b)+q
整理得到
a3-b3 =(a-b)(p+3ab)+q
由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时,
3ab+p=0。这样上式就成为
a3-b3=q
两边各乘以27a3,就得到
27a6-27a3b3=27qa3
由p=-3ab可知
27a6 + p = 27qa3
这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x。

费拉里发现的一元四次方程的解法

和三次方程中的做法一样,可以用一个坐标平移来消去四次方程
一般形式中的三次项。所以只要考虑下面形式的一元四次方程:
x4=px2+qx+r
关键在于要利用参数把等式的两边配成完全平方形式。考虑一个参数
a,我们有
(x2+a)2 = (p+2a)x2+qx+r+a2
等式右边是完全平方式当且仅当它的判别式为0,即
q2 = 4(p+2a)(r+a2)
这是一个关于a的三次方程,利用上面一元三次方程的解法,我们可以
解出参数a。这样原方程两边都是完全平方式,开方后就是一个关于x
的一元二次方程,于是就可以解出原方程的根x。

baidu

三次方程解法被称为“卡尔达诺公式”或“卡当公式”流传开来.卡尔达诺公布的解法可简述如下:

方程

x3+px=q(p,q为正数). (1)

卡尔达诺以方程x3+6x=20为例说明这一方法,他得到的解是x=过同样的程序得到他还求出x3+px+q=0和x3+q=px(p,q为正数)的公式解,就是说他已经能解任何形式的三次方程了.毫无疑问,这里包含了塔尔塔利亚的工作.但需要说明的是,他们像当时其他数学家一样,解方程只求正根,所以解法还是不完善的.管会受到多大的良心的责备”,把这两个根相乘,会得25-(-15)=40.于是他写道:“算术就是这样神秘地搞下去的,它的目标,正如常言所说,是又精致又不中用的.”他既承认负数有平方根,又怀疑它的合法性,因此称它为“诡变量”.但不管怎样,虚数毕竟在卡尔达诺那里诞生了.他还进一步指出,方程(指实系数方程)的虚根是成对出现的.

三次方程成功地解出之后,卡尔达诺的学生费拉里(L.Ferrari,1522—1565)受到启发,很快解出了四次方程,解法也发表在卡尔达诺《大术》中.下面用现代符号表出.

设方程为x4+bx3+cx2+dx+e=0. (4)

移项,得x4+bx3=-cx2-dx-e,

右边为x的二次三项式,若判别式为0,则可配成x的完全平方.解这个三次方程,设它的一个根为y0,代入(5),由于两边都是x的完全平方形式,取平方根,即得

解这两个关于x的二次方程,便可得到(4)的四个根.显然,若把(6)的其他根代入(5),会得出不同的方程,但结果是一样的.

在卡尔达诺之后,韦达对三次方程和四次方程解法作了进一步改进.1591年发表的《分析术引论》(Inartemanalyticemisagoge)中,他是这样解三次方程的:

对于 x3+bx2+cx+d=0,

结果得到简约三次方程

y3+py+q=0 他和卡尔达诺一样,只考虑方程的正根.

韦达不仅研究方程解法,还努力寻找方程的根与系数的关系,在《论方程的识别与修正》(Deaequationumrecog-nitoneetemendatjone,写于1591年,出版于1615年)中,他提出了四个定理,后人为了纪念这位大数学家,称之为韦达定理.二次方程的韦达定理是我们经常使用的,就

对方程理论作出重要贡献的另一位数学家是笛卡儿.他承认方程的负根,并研究了多项式方程的正根和负根个数的规律,得到著名的笛卡儿符号法则:多项式方程f(x)=0的正根个数等于方程系数的变号次数,或比此数少一正偶数;负根个数等于f(-x)的系数的变号次数,或少于此数一个正偶数.在这里,m重根是看作m个根的.实际上,正根个数和负根个数都可表成n-2p的形式,其中n是f(x)或f(-x)的系数变号次数,p为0,1,2…,p的取值要使n-2p非负.笛卡儿还研究了方程的根的个数同方程次数的关系,认为n次方程至多有n个根.在讨论三次方程时,他得到如下结论:若一有理系数三次方程有一个有理根,则此方程可表为有理系数因子的乘积.他的另一项重要成果是现今所谓因子定理:f(x)能为(x-a)整除(a>0),当且仅当a是f(x)=0的一个根,所有这些成就都是在笛卡儿《方法论》(DiscoursdelaMéthod,1637)的附录《几何》(LaGéometrie)中出现的.

除了方程以外,二项式定理的发现也在代数史上占有一席之地.实际上,指数为正整数的二项式定理(即(a+b)n在n为正整数时的展开式)曾被不同民族多次独立发现.11世纪的中国人贾宪和15世纪的阿拉伯数学家卡西(al-Kāshī)各自得到如下形式的三角形

这个三角形特点是,左右两行的数都是1,中间每个数为肩上两数之和.

在欧洲,德国数学家阿皮安努斯(P.Apianus,1495—1552)最早给出这个三角形(1527年),1544年左右,施蒂费尔引入“二项式系数”这个名称,并指出怎样从(1+a)n-1来计算(1+a)n.1653年,帕斯卡写成《算术三角形》(Traitédutrianglearithmétique)一书,从上述三角形出发,详细讨论了二项展开式的系数.该书于1665年出版后,影响很大.由于帕斯卡在数学界的威望,人们习惯地称此三角形为帕斯卡三角形.实际上,他的功绩主要是通过组合公式给出了二项式系数,即牛顿(T.Newton,1643—1727)进一步认识到,这个公式不仅适用于指数为正整数的二项展开式,而且当指数为分数或负数时,同样适用.他把二项式定理推广到分指数和负指数的情形,指出这三种形式的二项展开式第1项都是1,后面各项系数及字母指数也具有相同的变化规律:设n,m为正整数,则

请大家尊重提问者的要求,不需要长篇大论的推导过程,也不需要啰啰嗦嗦的数学史,只需要公式。经过我的艰辛编辑,并耐心抓成图片,发在下面的网址中:

http://sq.k12.com.cn/discuz/viewthread.php?tid=340639&extra=page%3D1&frombbs=1

如果提问者继续需要一元四次方程的求根公式,我将仍然提供如上面一样的优质服务。

以前遇到过这样的问题,好像要用演绎法,提问之前最好先到百度查查,人家有人已经做了,我只是转贴。

一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。

一般形式的一元三次方程的求解的具体公式~

有理数集内的因式分解,一般是可以解出来的。
要是复数集内,就需要一些技术了,用原式=(ax2+bx+c)(dx+e)
列出方程组,消元,化简成一元二次方程。至于公式,我没有记。

一般是凑出因式分解,一般来说其中一个有理数解是常数项的因子,求出一个解后就可以用多项式除法求其余的解了

一元三次方程配方公式是什么?
答:也能直接笔算出四次方程的解。方程解法:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法。2、中国学者范盛金于1989年发表的盛金公式法。两种公式法都可以解标准型的一元三次方程。用卡尔丹公式解题方便,相比之下,盛金公式虽然形式简单,但是整体较为冗长,不方便记忆,但是实际解题更为直观。

一元三次方程的解法
答:一元三次方程的公式解法有:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;2、中国学者范盛金于1989年发表的盛金公式法。两种公式法都可以解标准型的一元三次方程。用卡尔丹公式解题方便,相比之下,盛金公式虽然形式简单,但是整体较为冗长,不方便记忆,但是实际解题更为直观。卡尔丹公式法:特殊型一元...

解一元三次方程
答:解一元三次方程如下:一般用尔丹公式法。特殊型一元三次方程X^3+pX+q=0 (p、q∈R)。判别式Δ=(q/2)^2+(p/3)^3。卡尔丹公式:X1=(Y1)^(1/3)+(Y2)^(1/3);X2= (Y1)^(1/3)ω+(Y2)^(1/3)ω^2;X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,其中ω=(-1+i3^(1/2)...

一元三次方程怎么解?具体步骤!!
答:归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可...

一元三次方程怎么解?
答:1、对于一般形式的一元三次方程。2、做变换,差根变换,可以用综合除法。3、化为不含二次项的一元三次方程。4、想法把一元三次方程化成一元二次方程,关于u,v的三次方的二次方程,解出u,v。5、求出三个根,即可得出一元三次方程三个根的求根公式。一元三次方程解法思想是:通过配方和换元...

一元三次方程的解法
答:范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式——盛金公式,并建立了新判别法——盛金判别法。1.盛金公式一元三次方程aX3+bX2+cX+d=0,(a,b,c,d∈R,且a≠0)重根判别式总判别式Δ=B2-4AC。当A=B=0时,盛金公式1: 当Δ=B2-4AC>0时,...

一元三次方程的解法
答:一种换元法,对于一般形式的三次方程,先将方程化为x^3+px+q=0的特殊型令X=Z-p/3z,代入并化简,得:z3-p/27z+q=0。再令z^3=w代入,得:w^2-p/27w+q=0.这实际上是关于w的二次方程。解出w,再顺次解出z,x。2、卡尔丹公式法 特殊型一元三次方程X^3+pX+q=0(p、qER)判别式...

一元三次方程怎么解?
答:4. 最后,通过计算x = y - (p/3),我们可以得到方程的三个实根。这就是一元三次方程的求根公式。下面,我将举一个例子来说明:例子:解方程x^3 - 3x^2 + 3x - 1 = 0 将方程转化为紧凑形式,得到:x^3 - 3x^2 + 3x - 1 = 0 p = -3,q = 3,r = -1。根据上述计算过程...

如何快速解一元三次方程
答:如何快速解一元三次方程如下:1、做变换,差根变换,可以用综合除法。2、化为不含二次项的一元三次方程。3、想法把一元三次方程化成一元二次方程,关于u,v的三次方的二次方程,解出u,v。4、求出三个根,即可得出一元三次方程三个根的求根公式。一、一元三次方程 一元三次方程是指一般形...

求一元三次方程的简易解法,非常感谢
答:范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。 【盛金公式】 一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。 重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd, 总判别式:Δ=B^2-...