有12个乒乓球其中有一个是次品,但不知道是比标准轻还是重,有一天枰,怎样只秤3次就把这个次品球找到?

作者&投稿:於鬼 (若有异议请与网页底部的电邮联系)
1》将球分为A,B,C,D四组,每组三个。(第一次称量)先将C,D组放到天平上称,如果不平,(记住轻重关系以便后面用)则A,B组是正常球。如果平则 C,D组是正常球(进入第2步)。(第二次称量)拿出三个A或B组正常球,和C组放在天平上称量。如果不平,则可判断次品球的轻重。如果平则拿出D组的任意两个球进行第三次称量。(第三次称量)拿出C组的两个球放在天平上,如果不平可根据轻重关系判断哪个是次品(次品的轻重关系在第二次称量时已得知)。如果平,则剩下的那个是次品,轻重关系也知道了。如果第二次称量是平的说明C组是正常球,根据地一次的称量结果可知次品的轻重关系,则拿出D组任意两个放在天平两端,如果不平,可根据次品的轻重关系判断哪个是次品。如果平了,则剩下的那个是次品,轻重关系也从第一次称量结果得知。
2》第一次称量如果平了,则拿出C或D组正常球,重复第一步,可判断出次品及其轻重关系。

有一道数学题:有12个乒乓球其中有一个是次品,但不知道是比标准轻还是重,有一天枰,怎样只秤3次就把这个~

  这是一个比较难的逻辑推理题。这个题目难就难在不知道不合格的坏球究竟是比合格的好球轻,还是重。要解出这个题目,不仅要熟练地运用各种推理形式,而且还要有一定的机灵劲呢。


  用无码天平称乒乓球的重量,每称一次会有几种结果?有三种不同的结果,即左边的重量重于、轻于或者等于右边的重量,为了做到 称三次就能把这个不合格的乒乓球找出来,必须把球分成三组(各为四只球)。现在,我们为了解题的方便,把这三组乒乓球分别编号为 A组、B组、C组。


  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况:


  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。


  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:


  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。


  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。


  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。


  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。


  以上是第一次称之后出现第一种情况的分析。


  第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。


  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。


  这时,可以称第二次了。这次称后可能出现的是三种情况:


  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。


  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。


  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3之中。这是因为已交换的B2、A2、A3个球并未影响轻重,可见这三只球都是好球。


  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。


  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。


  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。

现在,我们为了解题的方便,把这三组乒乓球分别编号为 A组、B组、C组.
  首先,选任意的两组球放在天平上称.例如,我们把A、B两组放在天平上称.这就会出现两种情况:
  第一种情况,天平两边平衡.那么,不合格的坏球必在c组之中.
  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次.这时,又可能出现两种情况:
  1·天平两边平衡.这样,坏球必在C3、C4中.这是因为,在12个乒乓球中,只有一个是不合格的坏球.只有C1、C2中有一个是坏球时,天平两边才不平衡.既然天平两边平衡了,可见,C1、C2都是合格的好球.
  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果.这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3.
  2·天平两边不平衡.这样,坏球必在C1、C2中.这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡.这是称第二次.
  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果.道理同上.
  以上是第一次称之后出现第一种情况的分析.
  第二种情况,第一次称过后天平两边不平衡.这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中.
  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻.这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中.同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中.经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3.
  这时,可以称第二次了.这次称后可能出现的是三种情况:
  1·天平两边平衡.这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中.已知A盘重于B盘.所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球.
  这时候,可以把B1、B4各放在天平的一端,称第三次.这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球.
  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重.在这种情况下,则坏球必在未经交换的A4或B3之中.这是因为已交换的B2、A2、A3个球并未影响轻重,可见这三只球都是好球.
  以上说明A4或B3这其中有一个是坏球.这时候,只需要取A4或B3同标准球C1比较就行了.例如,取A4放在天平的一端,取C1放在天平的另一端.这时称第三次.如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1).
  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻.在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中.这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球.
  以上说明A2、A3、B2中有一个是坏球.这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球.把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球.
祀戎A0220 2014-09-23

12个乒乓球,其中有一个质量不同,现在有一个天枰没砝码和刻度。问:使...
答:教你一个简单的做法 把12个球分成两组,每组6个,用天枰称,哪组不一样那么就可以判断,这组里有那个质量不同的球。接着把这一组再分成两组,每组3个,用天枰称,同样的,哪组不一样就是哪组,接着随便拿两个称:如果质量一样,那么剩下的那个就是;如果哪一边不一样就是哪个。综合起来...

12个乒乓球,三次秤好.不知道那个次品是比正品轻还是重.要24种分发...
答:不知道坏球轻重需要一定的逻辑推理能力。第一步:分为三组,444,取其中两组称,这里会出现两种情况:A是天平平衡;B是天平不平衡。分别讨论如下:对情况A来说:第二步:剩余4个里面有一个是不标准的,抽取其中的三个和标准中的三个来称。如果不平衡的话可以判断此球是轻还是重,此情况为A1;如果...

关于逻辑的问题,好难的!
答:(1)先把12个乒乓球平均分成6个一堆,放在天平秤,轻的一面就有一个次品球。如果天平平衡,那么剩下的6个球中就有一个是次品球。(2)再把含有次品球的6个球平均分成三堆,每堆2个,先把其中两堆放在天平秤上,a.如果一面轻,这一面就有一个次品球,就再把这2个球在天平秤的左右两边各...

从12个乒乓球挑出次品,里面有一个轻的,怎样用天平称出来
答:天秤两边各放6个,两边重量肯定不一,次品一定在轻的一边,将这6个再各放3个在天秤两边,可以知道次品依然是在轻的一边。这3个里任取其中两个放天秤两边:1、如果轻重不一,轻的一边就是次品,如果轻重一样,则剩下一个就是次品。前后共需3次可以挑出次品。

数学竞赛题
答:第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是...

有十二个乒乓球特征相同,其中只有一个重量异常,现在要求用一部没有砝 ...
答:分A,B,C三组,每组4个,先拿AB上天平两端,假如平衡,次品就在C组,于是把C组分四组,(@步骤) E,F,G,H,每组一个,E,F上天平,假若不平衡,就再拿G换掉F,平衡的话,次品就是F,还是不平衡,次品就是E。假若E,F平衡,次品就在G,H中,把G换掉F,不平衡的话,G就是次品,平衡的...

5)有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现...
答:方法:1。把球编号为1,2,3,4,5,6,7,8,9,10,11,12;将1,2,3,4, 放在左边;5,6,7,8,放在右边称重;如果无轻重,次品在9,10,11,12,中(这留给你继续讨论)如果有轻重,次品在天平上的八个球中;2。把1,2,5,6,放在左边;3,7,9,10,放在右边称重;2-1 ...

把12个乒乓球平均分成三份。(4,4,4)先将天平两边各放4个来称,不平衡怎...
答:(1)若①②③④与⑤⑥⑦⑧平衡,⑼⑽⑾⑿中间就有一个次品,第二次:将⑼⑽⑾与①②③互换,⑿放在旁边,天平如果平衡,第三次:⑿与①,⑿轻,就是轻次品,⑿重就是重次平。第二次天平如果不平衡,比如⑼⑽⑾④轻,知道⑼⑽⑾中间有一个轻次品,第三次只要将⑼和⑽放在天平上称,就可以...

关于乒乓求得数学题
答:先把12个球随便分成三份:4:4:4,设为A、B、C三堆。 <第一次秤量> 选取A、B组比较,有两种结果: 一、如果A=B,则次品在C中,A、B组为正品; <第二次秤量>从C中任选3个球跟正品中的3个比较,有两种结果: 1、如果相等,则剩下的一个球是次品, <第三次秤量>把次品球与...

有7盒乒乓球,每盒12个,这7盒中有1个次品,比正品轻一些,用天平称,至 ...
答:最少2次,步骤如下:①首先,把乒乓球分为3,3,1三份,将3和3两份放入天平。如果平衡,则最后一盒为次品,结束;如果不平衡,则轻的那一份中的3盒有一盒次品。②如果上一步骤为不平衡,则将轻的那一份中的3盒分为1,1,1三份,将其中随机两份1,1放入天平。如果平衡,则剩下的为次品;如果...